Mimura H, Fujiwara H, Hiraki T, et al. Polidocanol sclerotherapy for painful venous malformations: evaluation of safety and efficacy in pain relief. Eur Radiol. 2009;19:2474–80. https://doi.org/10.1007/s00330-009-1442-2.
Uka M, Sakurai J, Matsui Y, et al. A single-center, single-arm, prospective, open-label trial to evaluate the efficacy and safety of percutaneous sclerotherapy with polidocanol for painful venous malformations (SCIRO-2001): study protocol. Nagoya J Med Sci. 2022;84:746–51. https://doi.org/10.18999/nagjms.84.4.746.
Article CAS PubMed PubMed Central Google Scholar
Yamaki T, Nozaki M, Sasaki K. Color duplex-guided sclerotherapy for the treatment of venous malformations. Dermatol Surg. 2000;26:323–8. https://doi.org/10.1046/j.1524-4725.2000.99248.x.
Article CAS PubMed Google Scholar
Suyama Y, Yamada K, Tsuda M, Tomita K, Shinmoto H. Repeat balloon-occluded retrograde transvenous obliteration for recurrent gastric varices via the left inferior phrenic vein. J Vasc Interv Radiol. 2020;31:1914-1916.e1. https://doi.org/10.1016/j.jvir.2020.06.022.
van der Vleuten CJ, Kater A, Wijnen MH, Schultze Kool LJ, Rovers MM. Effectiveness of sclerotherapy, surgery, and laser therapy in patients with venous malformations: a systematic review. Cardiovasc Intervent Radiol. 2014;37:977–89. https://doi.org/10.1007/s00270-013-0764-2.
McAree B, Ikponmwosa A, Brockbank K, Abbott C, Homer-Vanniasinkam S, Gough MJ. Comparative stability of sodium tetradecyl sulphate (STD) and polidocanol foam: impact on vein damage in an in-vitro model. Eur J Vasc Endovasc Surg. 2012;43:721–5. https://doi.org/10.1016/j.ejvs.2012.02.026.
Article CAS PubMed Google Scholar
Breu FX, Guggenbichler S, Wollmann JC. 2nd European consensus meeting on foam sclerotherapy 2006, Tegernsee. Germany Vasa. 2008;37(Suppl. 71):1–29.
Koizumi J, Hashimoto T, Myojin K, et al. C-arm CT-guided foam sclerotherapy for the treatment of gastric varices. J Vasc Interv Radiol. 2010;21:1583–7. https://doi.org/10.1016/j.jvir.2010.05.029.
Koizumi J, Hashimoto T, Myojin K, et al. Balloon-occluded retrograde transvenous obliteration of gastric varices: use of CT-guided foam sclerotherapy to optimize technique. AJR Am J Roentgenol. 2012;199:200–7. https://doi.org/10.2214/AJR.11.7002.
Zhang H, Yang A, Xu M, Liu S. A modified 3-way tap to enhance the stability and uniformity of sclerosant foam. Ann Vasc Surg. 2021;70:501–5. https://doi.org/10.1016/j.avsg.2020.08.116.
Cameron E, Chen T, Connor DE, Behnia M, Parsi K. Sclerosant foam structure and stability is strongly influenced by liquid air fraction. Eur J Vasc Endovasc Surg. 2013;46:488–94. https://doi.org/10.1016/j.ejvs.2013.07.013.
Article CAS PubMed Google Scholar
Bottaro E, Paterson J, Zhang X, et al. Physical vein models to quantify the flow performance of sclerosing foams. Front Bioeng Biotechnol. 2019;7:109. https://doi.org/10.3389/fbioe.2019.00109.
Article PubMed PubMed Central Google Scholar
Eckmann DM, Kobayashi S, Li M. Microvascular embolization following polidocanol microfoam sclerosant administration. Dermatol Surg. 2005;31:636–43. https://doi.org/10.1111/j.1524-4725.2005.31605.
Article CAS PubMed Google Scholar
Rial R, Hervas LS, Monux G, et al. Polidocanol foam stability in terms of its association with glycerin. Phlebology. 2014;29:304–9. https://doi.org/10.1177/0268355513477858.
Article CAS PubMed Google Scholar
Tessari L, Cavezzi A, Frullini A. Preliminary experience with a new sclerosing foam in the treatment of varicose veins. Dermatol Surg. 2001;27:58–60.
Itou C, Koizumi J, Hashimoto T, et al. Balloon-occluded retrograde transvenous obliteration for the treatment of gastric varices: polidocanol foam versus liquid ethanolamine oleate. AJR Am J Roentgenol. 2015;205:659–66. https://doi.org/10.2214/AJR.14.13389.
Torikai H, Inoue M, Tsukada J, et al. Comparison of foaming properties between the Shirasu porous glass membrane device and Tessari’s three-way stopcock technique for polidocanol and ethanolamine oleate foam production: a benchtop study. J Vasc Interv Radiol. 2022;33:518-524.e3. https://doi.org/10.1016/j.jvir.2022.01.016.
Davis JP, Foegeding EA. Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins. Colloids Surf B Biointerfaces. 2007;54:200–10. https://doi.org/10.1016/j.colsurfb.2006.10.017.
Article CAS PubMed Google Scholar
Hato M. Attractive forces between surfaces of controlled “hydrophobicity” across water: a possible range of “hydrophobic interactions” between macroscopic hydrophobic surfaces across water. J Phys Chem. 1996;100:18530–8. https://doi.org/10.1021/jp961927h.
Meyer EE, Lin Q, Israelachvili JN. Effects of dissolved gas on the Hbic attraction between surfactant-coated surfaces. Langmuir. 2005;21:256–9. https://doi.org/10.1021/la048318i.
Article CAS PubMed Google Scholar
Meyer EE, Rosenberg KJ, Israelachvili JN. Recent progress in understanding hydrophobic interactions. Proc Natl Acad Sci USA. 2006;103:15739–46. https://doi.org/10.1073/pnas.0606422103.
Article CAS PubMed PubMed Central Google Scholar
Saint-Jalmes A. Physical chemistry in foam drainage and coarsening. Soft Matter. 2006;2(10):836–49. https://doi.org/10.1039/b606780h.
Article CAS PubMed Google Scholar
Jalmes AS, Langevin D. Time evolution of aqueous foams: drainage and coarsening. J Phys Condens Matter. 2002;14:9397. https://doi.org/10.1088/0953-8984/14/40/325.
Wollmann JC. The history of sclerosing foams. Dermatol Surg. 2004;30:694–703. https://doi.org/10.1111/j.1524-4725.2004.30208.x.
Cameron E, Chen T, Connor DE, et al. Sclerosant foam structure and stability is strongly influenced by liquid air fraction. Eur J Vasc Endovasc Surg. 2013;46:488–94. https://doi.org/10.1016/j.ejvs.2013.07.013.
Article CAS PubMed Google Scholar
Star P, Connor DE, Parsi K. Phlebology. 2018;33:150–62. https://doi.org/10.1177/0268355516687864.
Sun J, Chang C, Su Y, Gu L, Yang Y, Li J. Impact of saccharides on the foam properties of egg white: correlation between rheological, interfacial properties and foam properties. Food Hydrocolloids. 2022;122: 107088. https://doi.org/10.1016/j.foodhyd.2021.107088.
Ochi A, Katsuta K, Maruyama E, Kubo M, Ueda T. Effects of sugars on stability of egg foam and their rheological properties. Hydrocolloids. 2000;2:275–80. https://doi.org/10.1016/B978-044450178-3/50095-0.
Yang X, Foegeding EA. Effects of sucrose on egg white protein and whey protein isolate foams: Factors determining properties of wet and dry foams (cakes). Food Hydrocolloids. 2010;24:227–38. https://doi.org/10.1016/j.foodhyd.2009.09.011.
Zhao T, Li Y, He Y. The effect of the glucose-based surfactant on surface/interfacial and foam ability properties. J Dispers Sci Technol. 2020;41:960–6. https://doi.org/10.1080/01932691.2017.1413655.
Mukund A, Deogaonkar G, Rajesh S, et al. Safety and efficacy of sodium tetradecyl sulfate and Lipiodol foam in balloon-occluded retrograde transvenous obliteration (BRTO) for large porto-systemic shunts. Cardiovasc Intervent Radiol. 2017;40:1010–6. https://doi.org/10.1007/s00270-017-1593-5.
Comments (0)