A lanthanide–carbon triple bond stabilized within a fullerene cage

Lewis, G. N. The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916).

Article  CAS  Google Scholar 

Nugent, W. A. & Mayer, J. M. Metal-Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo,Nitrido, Imido, Alkylidene, or Alkylidyne Ligands (Wiley, 1988).

Ortu, F. Rare earth starting materials and methodologies for synthetic chemistry. Chem. Rev. 122, 6040–6116 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zepf, V. Rare Earth Elements: A New Approach to the Nexus of Supply, Demand and Use: Exemplified along the Use of Neodymium in Permanent Magnets (Springer, 2013).

Wall, F. in Critical Metals Handbook (ed. Gunn, G.) 312–339 (Wiley, 2014).

Crosswhite, H. M., Crosswhite, H., Carnall, W. T. & Paszek, A. P. Spectrum analysis of U3+:LaCl3. J. Chem. Phys. 72, 5103–5117 (1980).

Article  CAS  Google Scholar 

Lu, J.-B. et al. Norm-conserving pseudopotentials and basis sets to explore lanthanide chemistry in complex environments. J. Chem. Theory Comput. 15, 5987–5997 (2019).

Article  CAS  PubMed  Google Scholar 

Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).

Article  CAS  Google Scholar 

Summerscales, O. T. & Gordon, J. C. Complexes containing multiple bonding interactions between lanthanoid elements and main-group fragments. RSC Adv. 3, 6682–6692 (2013).

Article  CAS  Google Scholar 

Schumann, H. & Müller, J. Metallorganische verbindungen der lanthaniden: VI. Neutrale und anionische alkyliden-komplexe von erbium und lutetium. J. Organomet. Chem. 169, C1–C4 (1979).

Article  CAS  Google Scholar 

Aparna, K., Ferguson, M. & Cavell, R. G. A monomeric samarium bis(iminophosphorano) chelate complex with a Sm=C bond. J. Am. Chem. Soc. 122, 726–727 (2000).

Article  CAS  Google Scholar 

Gregson, M. et al. A cerium(IV)–carbon multiple bond. Angew. Chem. Int. Ed. 52, 13016–13019 (2013).

Article  CAS  Google Scholar 

Litlabø, R. et al. A rare-earth metal variant of the tebbe reagent. Angew. Chem. Int. Ed. 47, 9560–9564 (2008).

Article  Google Scholar 

Zhang, W.-X., Wang, Z., Nishiura, M., Xi, Z. & Hou, Z. Ln4(CH2)4 cubane-type rare-earth methylidene complexes consisting of “(C5Me4SiMe3)LnCH2” units (Ln = Tm, Lu). J. Am. Chem. Soc. 133, 5712–5715 (2011).

Article  CAS  PubMed  Google Scholar 

Gregson, M. et al. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes. Nat. Commun. 8, 14137 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dietrich, H. M., Grove, H., Törnroos, K. W. & Anwander, R. Multiple C−H bond activation in group 3 chemistry: synthesis and structural characterization of an yttrium−aluminum−methine cluster. J. Am. Chem. Soc. 128, 1458–1459 (2006).

Article  CAS  PubMed  Google Scholar 

Bojer, D., Venugopal, A., Neumann, B., Stammler, H.-G. & Mitzel, N. W. Lewis base induced reductions in organolanthanide chemistry. Angew. Chem. Int. Ed. 49, 2611–2614 (2010).

Article  CAS  Google Scholar 

Cui, D., Nishiura, M. & Hou, Z. Lanthanide–imido complexes and their reactions with benzonitrile. Angew. Chem. Int. Ed. 44, 959–962 (2005).

Article  CAS  Google Scholar 

Scott, J., Basuli, F., Fout, A. R., Huffman, J. C. & Mindiola, D. J. Evidence for the existence of a terminal imidoscandium compound: intermolecular C–H activation and complexation reactions with the transient Sc=NAr species. Angew. Chem. Int. Ed. 47, 8502–8505 (2008).

Article  CAS  Google Scholar 

Solola, L. A. et al. An alkali metal-capped cerium(IV) imido complex. J. Am. Chem. Soc. 138, 6928–6931 (2016).

Article  CAS  PubMed  Google Scholar 

Solola, L. A. et al. Cerium(IV) imido complexes: structural, computational, and reactivity studies. J. Am. Chem. Soc. 139, 2435–2442 (2017).

Article  CAS  PubMed  Google Scholar 

Wilson, H. H. et al. Synthesis and characterization of a bridging cerium(IV) nitride complex. J. Am. Chem. Soc. 145, 781–786 (2023).

Article  CAS  PubMed  Google Scholar 

Schädle, D., Meermann-Zimmermann, M., Schädle, C., Maichle-Mössmer, C. & Anwander, R. Rare-earth metal complexes with terminal imido ligands. Eur. J. Inorg. Chem. 2015, 1334–1339 (2015).

Article  Google Scholar 

Scott, J. et al. Lewis acid stabilized methylidene and oxoscandium complexes. J. Am. Chem. Soc. 130, 14438–14439 (2008).

Article  CAS  PubMed  Google Scholar 

So, Y.-M. et al. A tetravalent cerium complex containing a Ce=O bond. Angew. Chem. Int. Ed. 53, 1626–1629 (2014).

Article  CAS  Google Scholar 

Damon, P. L., Wu, G., Kaltsoyannis, N. & Hayton, T. W. Formation of a Ce(IV) oxo complex via inner sphere nitrate reduction. J. Am. Chem. Soc. 138, 12743–12746 (2016).

Article  CAS  PubMed  Google Scholar 

Assefa, M. K., Wu, G. & Hayton, T. W. Synthesis of a terminal Ce(IV) oxo complex by photolysis of a Ce(III) nitrate complex. Chem. Sci. 8, 7873–7878 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clark, D. L., Gordon, J. C., Hay, P. J. & Poli, R. Existence and stability of lanthanide−main group element multiple bonds. New paradigms in the bonding of the 4f elements. A DFT study of Cp2CeZ (Z = F+, O, NH, CH-, CH2) and the ligand adduct Cp2Ce(CH2)(NH3). Organometallics 24, 5747–5758 (2005).

Article  CAS  Google Scholar 

Roos, B. O. & Pyykkö, P. Bonding trends in molecular compounds of lanthanides: the double-bonded carbene cations LnCH2+ (ln=Sc, Y, La–Lu). Chem. Eur. J. 16, 270–275 (2010).

Article  CAS  PubMed  Google Scholar 

Wang, X. et al. Matrix infrared spectroscopic and computational investigations of the lanthanide−methylene complexes CH2LnF2 with single Ln−C bonds. J. Phys. Chem. A 115, 1913–1921 (2011).

Article  CAS  PubMed  Google Scholar 

Mooßen, O. & Dolg, M. Assigning the cerium oxidation state for CH2CeF2 and OCeF2 based on multireference wave function analysis. J. Phys. Chem. A 120, 3966–3974 (2016).

Article  PubMed  Google Scholar 

Mooßen, O. & Dolg, M. Multi-reference character and Ce 4f orbital contributions in terminal multiple Ce−Z bonds of Cp2CeZ (Z = CH2, CH−, NH, O, F+) complexes. Comput. Theor. Chem. 1073, 34–44 (2015).

Article  Google Scholar 

Hu, H.-S., Wei, F., Wang, X., Andrews, L. & Li, J. Actinide–silicon multiradical bonding: infrared spectra and electronic structures of the Si(μ-X)AnF3 (An = Th, U; X = H, F) molecules. J. Am. Chem. Soc. 136, 1427–1437 (2014).

Article  CAS  PubMed  Google Scholar 

Gregson, M. et al. Emergence of comparable covalency in isostructural cerium(IV)– and uranium(IV)–carbon multiple bonds. Chem. Sci. 7, 3286–3297 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, B. et al. Cerium(IV)-alkyl, -aryl, and -alkynyl complexes synthesized by an energy-level match strategy. CCS Chem. 7, 1043–1053 (2024).

Article  Google Scholar 

Baker, C. F., Seed, J. A., Adams, R. W., Lee, D. & Liddle, S. T. 13Ccarbene nuclear magnetic resonance chemical shift analysis confirms CeIV=C double bonding in cerium(IV)–diphosphonioalkylidene complexes. Chem. Sci. 15, 238–249 (2024).

Article  CAS  Google Scholar 

Zhang, X. et al. A diuranium carbide cluster stabilized inside a C80 fullerene cage. Nat. Commun. 9, 2753 (2018).

Article  PubMed  PubMed Central 

Comments (0)

No login
gif