A biocompatible Lossen rearrangement in Escherichia coli

Wallace, S., Schultz, E. E. & Balskus, E. P. Using non-enzymatic chemistry to influence microbial metabolism. Curr. Opin. Chem. Biol. 25, 71–79 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sadler, J. C., Dennis, J. A., Johnson, N. W. & Wallace, S. Interfacing non-enzymatic catalysis with living microorganisms. RSC Chem. Biol. 2, 1073–1083 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wallace, S. & Balskus, E. P. Opportunities for merging chemical and biological synthesis. Curr. Opin. Biotechnol. 30, 1–8 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stewart, K. N. & Domaille, D. W. Enhancing biosynthesis and manipulating flux in whole cells with abiotic catalysis. ChemBioChem 22, 469–477 (2021).

Article  CAS  PubMed  Google Scholar 

Ngo, A. H., Bose, S. & Do, L. H. Intracellular chemistry: integrating molecular inorganic catalysts with living systems. Chemistry 24, 10584–10594 (2018).

Article  CAS  PubMed  Google Scholar 

Lee, Y., Umeano, A. & Balskus, E. P. Rescuing auxotrophic microorganisms with nonenzymatic chemistry. Angew. Chem. Int. Ed. 52, 11800–11803 (2013).

Article  CAS  Google Scholar 

Fan, G., Dundas, C. M., Graham, A. J., Lynd, N. A. & Keitz, B. K. Shewanella oneidensis as a living electrode for controlled radical polymerization. Proc. Natl Acad. Sci. USA 115, 4559–4564 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, J. et al. Light-driven fine chemical production in yeast biohybrids. Science 362, 813–816 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rubini, R., Ivanov, I. & Mayer, C. A screening platform to identify and tailor biocompatible small-molecule catalysts. Chemistry 25, 16017–16021 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wallace, S. & Balskus, E. P. Interfacing microbial styrene production with a biocompatible cyclopropanation reaction. Angew. Chem. Int. Ed. 54, 7106–7109 (2015).

Article  CAS  Google Scholar 

Maaskant, R. V., Chordia, S. & Roelfes, G. Merging whole-cell biosynthesis of styrene and transition-metal catalyzed derivatization reactions. ChemCatChem 13, 1607–1613 (2021).

Article  CAS  Google Scholar 

Sharma, S. V. et al. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo. Nat. Commun. 8, 229 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Valenzuela-Ortega, M., Suitor, J. T., White, M. F. M., Hinchcliffe, T. & Wallace, S. Microbial upcycling of waste PET to adipic acid. ACS Cent. Sci. 9, 2057–2063 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dennis, J. A., Sadler, J. C. & Wallace, S. Tyramine derivatives catalyze the aldol dimerization of butyraldehyde in the presence of Escherichia coli. ChemBioChem 23, e202200238 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, S., Zhou, Y., Gerngross, D., Jeschek, M. & Ward, T. R. Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources. Nat. Commun. 10, 5060 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Adamson, C. & Kanai, M. Integrating abiotic chemical catalysis and enzymatic catalysis in living cells. Org. Biomol. Chem. 19, 37–45 (2021).

Article  CAS  PubMed  Google Scholar 

Fu, Q. et al. Bioorthogonal chemistry for prodrug activation in vivo. Chem. Soc. Rev. 52, 7737–7772 (2023).

Article  CAS  PubMed  Google Scholar 

Rebelein, J. G. & Ward, T. R. In vivo catalyzed new-to-nature reactions. Curr. Opin. Biotechnol. 53, 106–114 (2018).

Article  CAS  PubMed  Google Scholar 

Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).

Article  CAS  Google Scholar 

Wang, Y. et al. Directed evolution: methodologies and applications. Chem. Rev. 121, 12384–12444 (2021).

Article  CAS  PubMed  Google Scholar 

Lechner, H. & Oberdorfer, G. Derivatives of natural organocatalytic cofactors and artificial organocatalytic cofactors as catalysts in enzymes. ChemBioChem 23, e202100599 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meinen, B. A. & Bahl, C. D. Breakthroughs in computational design methods open up new frontiers for de novo protein engineering. Protein Eng. Design Select. 34, gzab007 (2021).

Article  Google Scholar 

Davis, H. J. & Ward, T. R. Artificial metalloenzymes: challenges and opportunities. ACS Cent. Sci. 5, 1120–1136 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, J. et al. Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nat. Chem. 13, 1186–1191 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wallace, S. & Balskus, E. P. Designer micelles accelerate flux through engineered metabolism in E. coli and support biocompatible chemistry. Angew. Chem. Int. Ed. 55, 6023–6027 (2016).

Article  CAS  Google Scholar 

Huang, J. et al. Complete integration of carbene-transfer chemistry into biosynthesis. Nature 617, 403–408 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, J. et al. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol. Metab. Eng. 36, 57–67 (2016).

Article  PubMed  Google Scholar 

Dennis, J. A., Johnson, N. W., Thorpe, T. W. & Wallace, S. Biocompatible α-methylenation of metabolic butyraldehyde in living bacteria. Angew. Chem. Int. Ed. 62, e202306347 (2023).

Article  CAS  Google Scholar 

Lossen, W. Ueber Benzoylderivate des Hydroxylamins. Justus Liebigs Ann. Chem. 161, 347–362 (1872).

Article  Google Scholar 

Thomas, M. et al. The Lossen rearrangement from free hydroxamic acids. Org. Biomol. Chem. 17, 5420–5427 (2019).

Article  CAS  PubMed  Google Scholar 

Ghosh, A. K., Sarkar, A. & Brindisi, M. The Curtius rearrangement: mechanistic insight and recent applications in natural product syntheses. Org. Biomol. Chem. 16, 2006–2027 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bauer, L. & Exner, O. The chemistry of hydroxamic acids and N‐hydroxyimides. Angew. Chem. Int. Ed. 13, 376–384 (1974).

Article  Google Scholar 

Citarella, A., Moi, D., Pinzi, L., Bonanni, D. & Rastelli, G. Hydroxamic acid derivatives: from synthetic strategies to medicinal chemistry applications. ACS Omega 6, 21843–21849 (2021).

Comments (0)

No login
gif