Wallace, S., Schultz, E. E. & Balskus, E. P. Using non-enzymatic chemistry to influence microbial metabolism. Curr. Opin. Chem. Biol. 25, 71–79 (2015).
Article CAS PubMed PubMed Central Google Scholar
Sadler, J. C., Dennis, J. A., Johnson, N. W. & Wallace, S. Interfacing non-enzymatic catalysis with living microorganisms. RSC Chem. Biol. 2, 1073–1083 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wallace, S. & Balskus, E. P. Opportunities for merging chemical and biological synthesis. Curr. Opin. Biotechnol. 30, 1–8 (2014).
Article CAS PubMed PubMed Central Google Scholar
Stewart, K. N. & Domaille, D. W. Enhancing biosynthesis and manipulating flux in whole cells with abiotic catalysis. ChemBioChem 22, 469–477 (2021).
Article CAS PubMed Google Scholar
Ngo, A. H., Bose, S. & Do, L. H. Intracellular chemistry: integrating molecular inorganic catalysts with living systems. Chemistry 24, 10584–10594 (2018).
Article CAS PubMed Google Scholar
Lee, Y., Umeano, A. & Balskus, E. P. Rescuing auxotrophic microorganisms with nonenzymatic chemistry. Angew. Chem. Int. Ed. 52, 11800–11803 (2013).
Fan, G., Dundas, C. M., Graham, A. J., Lynd, N. A. & Keitz, B. K. Shewanella oneidensis as a living electrode for controlled radical polymerization. Proc. Natl Acad. Sci. USA 115, 4559–4564 (2018).
Article CAS PubMed PubMed Central Google Scholar
Guo, J. et al. Light-driven fine chemical production in yeast biohybrids. Science 362, 813–816 (2018).
Article CAS PubMed PubMed Central Google Scholar
Rubini, R., Ivanov, I. & Mayer, C. A screening platform to identify and tailor biocompatible small-molecule catalysts. Chemistry 25, 16017–16021 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wallace, S. & Balskus, E. P. Interfacing microbial styrene production with a biocompatible cyclopropanation reaction. Angew. Chem. Int. Ed. 54, 7106–7109 (2015).
Maaskant, R. V., Chordia, S. & Roelfes, G. Merging whole-cell biosynthesis of styrene and transition-metal catalyzed derivatization reactions. ChemCatChem 13, 1607–1613 (2021).
Sharma, S. V. et al. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo. Nat. Commun. 8, 229 (2017).
Article PubMed PubMed Central Google Scholar
Valenzuela-Ortega, M., Suitor, J. T., White, M. F. M., Hinchcliffe, T. & Wallace, S. Microbial upcycling of waste PET to adipic acid. ACS Cent. Sci. 9, 2057–2063 (2023).
Article CAS PubMed PubMed Central Google Scholar
Dennis, J. A., Sadler, J. C. & Wallace, S. Tyramine derivatives catalyze the aldol dimerization of butyraldehyde in the presence of Escherichia coli. ChemBioChem 23, e202200238 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wu, S., Zhou, Y., Gerngross, D., Jeschek, M. & Ward, T. R. Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources. Nat. Commun. 10, 5060 (2019).
Article PubMed PubMed Central Google Scholar
Adamson, C. & Kanai, M. Integrating abiotic chemical catalysis and enzymatic catalysis in living cells. Org. Biomol. Chem. 19, 37–45 (2021).
Article CAS PubMed Google Scholar
Fu, Q. et al. Bioorthogonal chemistry for prodrug activation in vivo. Chem. Soc. Rev. 52, 7737–7772 (2023).
Article CAS PubMed Google Scholar
Rebelein, J. G. & Ward, T. R. In vivo catalyzed new-to-nature reactions. Curr. Opin. Biotechnol. 53, 106–114 (2018).
Article CAS PubMed Google Scholar
Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).
Wang, Y. et al. Directed evolution: methodologies and applications. Chem. Rev. 121, 12384–12444 (2021).
Article CAS PubMed Google Scholar
Lechner, H. & Oberdorfer, G. Derivatives of natural organocatalytic cofactors and artificial organocatalytic cofactors as catalysts in enzymes. ChemBioChem 23, e202100599 (2022).
Article CAS PubMed PubMed Central Google Scholar
Meinen, B. A. & Bahl, C. D. Breakthroughs in computational design methods open up new frontiers for de novo protein engineering. Protein Eng. Design Select. 34, gzab007 (2021).
Davis, H. J. & Ward, T. R. Artificial metalloenzymes: challenges and opportunities. ACS Cent. Sci. 5, 1120–1136 (2019).
Article CAS PubMed PubMed Central Google Scholar
Huang, J. et al. Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nat. Chem. 13, 1186–1191 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wallace, S. & Balskus, E. P. Designer micelles accelerate flux through engineered metabolism in E. coli and support biocompatible chemistry. Angew. Chem. Int. Ed. 55, 6023–6027 (2016).
Huang, J. et al. Complete integration of carbene-transfer chemistry into biosynthesis. Nature 617, 403–408 (2023).
Article CAS PubMed PubMed Central Google Scholar
Liu, J. et al. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol. Metab. Eng. 36, 57–67 (2016).
Dennis, J. A., Johnson, N. W., Thorpe, T. W. & Wallace, S. Biocompatible α-methylenation of metabolic butyraldehyde in living bacteria. Angew. Chem. Int. Ed. 62, e202306347 (2023).
Lossen, W. Ueber Benzoylderivate des Hydroxylamins. Justus Liebigs Ann. Chem. 161, 347–362 (1872).
Thomas, M. et al. The Lossen rearrangement from free hydroxamic acids. Org. Biomol. Chem. 17, 5420–5427 (2019).
Article CAS PubMed Google Scholar
Ghosh, A. K., Sarkar, A. & Brindisi, M. The Curtius rearrangement: mechanistic insight and recent applications in natural product syntheses. Org. Biomol. Chem. 16, 2006–2027 (2018).
Article CAS PubMed PubMed Central Google Scholar
Bauer, L. & Exner, O. The chemistry of hydroxamic acids and N‐hydroxyimides. Angew. Chem. Int. Ed. 13, 376–384 (1974).
Citarella, A., Moi, D., Pinzi, L., Bonanni, D. & Rastelli, G. Hydroxamic acid derivatives: from synthetic strategies to medicinal chemistry applications. ACS Omega 6, 21843–21849 (2021).
Comments (0)