Schneider, G., Neidhart, W., Giller, T. & Schmid, G. “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew. Chem. Int. Ed. 38, 2894–2896 (1999).
Schneider, G. & Clark, D. E. Automated de novo drug design: are we nearly there yet? Angew. Chem. Int. Ed. 58, 10792–10803 (2019).
Sun, H., Tawa, G. & Wallqvist, A. Classification of scaffold-hopping approaches. Drug Discov. Today 17, 310–324 (2012).
Article CAS PubMed Google Scholar
Rafferty, R. J., Hicklin, R. W., Maloof, K. A. & Hergenrother, P. J. Synthesis of complex and diverse compounds through ring distortion of abietic acid. Angew. Chem. Int. Ed. 53, 220–224 (2014).
Hu, Y., Stumpfe, D. & Bajorath, J. Recent advances in scaffold hopping. J. Med. Chem. 60, 1238–1246 (2017).
Article CAS PubMed Google Scholar
Morcillo, S. P. Radical‐promoted C–C bond cleavage: a deconstructive approach for selective functionalization. Angew. Chem. Int. Ed. 58, 14044–14054 (2019).
Brotschi, C. et al. Oxadiazole derivatives as dual orexin receptor antagonists: synthesis, structure–activity relationships, and sleep-promoting properties in rats. ChemMedChem 14, 1257–1270 (2019).
Article CAS PubMed Google Scholar
Boss, C. et al. The quest for the best dual orexin receptor antagonist (daridorexant) for the treatment of insomnia disorders. ChemMedChem 15, 2286–2305 (2020).
Article CAS PubMed Google Scholar
Taylor, R. D., Maccoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).
Article CAS PubMed Google Scholar
Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).
Article CAS PubMed Google Scholar
Xu, H., Zuend, S. J., Woll, M. G., Tao, Y. & Jacobsen, E. N. Asymmetric cooperative catalysis of strong brønsted acid-promoted reactions using chiral ureas. Science 327, 986–990 (2010).
Article CAS PubMed PubMed Central Google Scholar
Xie, Y. & List, B. Catalytic asymmetric intramolecular [4+2] cycloaddition of in situ generated ortho-quinone methides. Angew. Chem. Int. Ed. 56, 4936–4940 (2017).
Zhu, J.-X., Chen, Z.-C., Du, W. & Chen, Y.-C. Asymmetric auto-tandem palladium catalysis for 2,4-dienyl carbonates: ligand-controlled divergent synthesis. Angew. Chem. Int. Ed. 61, e202200880 (2022).
Liu, C. et al. Palladium-catalyzed cascade cyclization for the synthesis of fused benzo-aza-oxa-[5-6-5] tetracycles. Angew. Chem. Int. Ed. 61, e202215020 (2022).
Klose, I., Di Mauro, G., Kaldre, D. & Maulide, N. Inverse hydride shuttle catalysis enables the stereoselective one-step synthesis of complex frameworks. Nat. Chem. 14, 1306–1310 (2022).
Article CAS PubMed PubMed Central Google Scholar
Noyori, R., Tokunaga, M. & Kitamura, M. Stereoselective organic synthesis via dynamic kinetic resolution. Bull. Chem. Soc. Jpn. 68, 36–55 (1995).
Huerta, F. F., Minidis, A. B. E. & Bäckvall, J. E. Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem. Soc. Rev. 30, 321–331 (2001).
Steinreiber, J., Faber, K. & Griengl, H. De‐racemization of enantiomers versus de-epimerization of diastereomers-classification of dynamic kinetic asymmetric transformations (DYKAT). Chem. Eur. J. 14, 8060–8072 (2008).
Article CAS PubMed Google Scholar
Pellissier, H. Chirality from Dynamic Kinetic Resolution (The Royal Society of Chemistry, 2011); https://doi.org/10.1039/9781849732673
Ruan, L.-X., Sun, B., Liu, J.-M. & Shi, S.-L. Dynamic kinetic asymmetric arylation and alkenylation of ketones. Science 379, 662–670 (2023).
Article CAS PubMed Google Scholar
DeHovitz, J. S. et al. Static to inducibly dynamic stereocontrol: the convergent use of racemic β-substituted ketones. Science 369, 1113–1118 (2020).
Article CAS PubMed Google Scholar
Qi, X., Liu, S. & Lan, Y. Computational studies on an aminomethylation precursor: (Xantphos)Pd(CH2NBn2)+. Organometallics 35, 1582–1585 (2016).
Yu, B., Zou, S., Liu, H. & Huang, H. Palladium-catalyzed ring-closing reaction via C–N bond metathesis for rapid construction of saturated N-heterocycles. J. Am. Chem. Soc. 142, 18341–18345 (2020).
Article CAS PubMed Google Scholar
Zhang, H., Jiang, T., Zhang, J. & Huang, H. Catalytic reactions directed by a structurally well-defined aminomethyl cyclopalladated complex. Acc. Chem. Res. 54, 4305–4318 (2021).
Article CAS PubMed Google Scholar
Zou, S., Zhao, Z. & Huang, H. Palladium‐catalyzed aminoalkylative cyclization enables modular synthesis of exocyclic 1,3-dienes. Angew. Chem. Int. Ed. 62, e202311603 (2023).
Cai, S., Zhao, Z., Yang, G. & Huang, H. Dynamic amine sorting enables multiselective construction of unsymmetrical chiral diamines. Nat. Chem. 16, 1972–1981 (2024).
Article CAS PubMed Google Scholar
Hamilton, J. Y., Rössler, S. L. & Carreira, E. M. Enantio- and diastereoselective spiroketalization catalyzed by chiral iridium complex. J. Am. Chem. Soc. 139, 8082–8085 (2017).
Article CAS PubMed Google Scholar
Zhang, G., Gao, B. & Huang, H. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines. Angew. Chem. Int. Ed. 54, 7657–7661 (2015).
Witherup, K. M. et al. Martinelline and martinellic acid, novel G-protein linked receptor antagonists from the tropical plant Martinella iquitosensis (Bignoniaceae). J. Am. Chem. Soc. 117, 6682–6685 (1995).
Haarr, M. B. & Sydnes, M. O. Synthesis of the hexahydropyrrolo-[3,2-c]-quinoline core structure and strategies for further elaboration to martinelline, martinellic acid, incargranine b, and seneciobipyrrolidine. Molecules 26, 341 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ma, D., Xia, C., Jiang, J. & Zhang, J. First total synthesis of martinellic acid, a naturally occurring bradykinin receptor antagonist. Org. Lett. 3, 2189–2191 (2001).
Article CAS PubMed Google Scholar
Ikeda, S., Shibuya, M. & Iwabuchi, Y. Asymmetric total synthesis of martinelline and martinellic acid. Chem. Commun. 504–506 (2007).
Davies, S. G. et al. Asymmetric synthesis of (−)-martinellic acid. Org. Lett. 15, 2050–2053 (2013).
Article CAS PubMed Google Scholar
Pappoppula, M. & Aponick, A. Enantioselective total synthesis of (−)-martinellic acid. Angew. Chem. Int. Ed. 54, 15827–15830 (2015).
Comments (0)