Adaptive dynamic kinetic resolution enables alteration of chiral induction with ring sizes

Schneider, G., Neidhart, W., Giller, T. & Schmid, G. “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew. Chem. Int. Ed. 38, 2894–2896 (1999).

Article  CAS  Google Scholar 

Schneider, G. & Clark, D. E. Automated de novo drug design: are we nearly there yet? Angew. Chem. Int. Ed. 58, 10792–10803 (2019).

Article  CAS  Google Scholar 

Sun, H., Tawa, G. & Wallqvist, A. Classification of scaffold-hopping approaches. Drug Discov. Today 17, 310–324 (2012).

Article  CAS  PubMed  Google Scholar 

Rafferty, R. J., Hicklin, R. W., Maloof, K. A. & Hergenrother, P. J. Synthesis of complex and diverse compounds through ring distortion of abietic acid. Angew. Chem. Int. Ed. 53, 220–224 (2014).

Article  CAS  Google Scholar 

Hu, Y., Stumpfe, D. & Bajorath, J. Recent advances in scaffold hopping. J. Med. Chem. 60, 1238–1246 (2017).

Article  CAS  PubMed  Google Scholar 

Morcillo, S. P. Radical‐promoted C–C bond cleavage: a deconstructive approach for selective functionalization. Angew. Chem. Int. Ed. 58, 14044–14054 (2019).

Article  CAS  Google Scholar 

Brotschi, C. et al. Oxadiazole derivatives as dual orexin receptor antagonists: synthesis, structure–activity relationships, and sleep-promoting properties in rats. ChemMedChem 14, 1257–1270 (2019).

Article  CAS  PubMed  Google Scholar 

Boss, C. et al. The quest for the best dual orexin receptor antagonist (daridorexant) for the treatment of insomnia disorders. ChemMedChem 15, 2286–2305 (2020).

Article  CAS  PubMed  Google Scholar 

Taylor, R. D., Maccoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

Article  CAS  PubMed  Google Scholar 

Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

Article  CAS  PubMed  Google Scholar 

Xu, H., Zuend, S. J., Woll, M. G., Tao, Y. & Jacobsen, E. N. Asymmetric cooperative catalysis of strong brønsted acid-promoted reactions using chiral ureas. Science 327, 986–990 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie, Y. & List, B. Catalytic asymmetric intramolecular [4+2] cycloaddition of in situ generated ortho-quinone methides. Angew. Chem. Int. Ed. 56, 4936–4940 (2017).

Article  CAS  Google Scholar 

Zhu, J.-X., Chen, Z.-C., Du, W. & Chen, Y.-C. Asymmetric auto-tandem palladium catalysis for 2,4-dienyl carbonates: ligand-controlled divergent synthesis. Angew. Chem. Int. Ed. 61, e202200880 (2022).

Article  CAS  Google Scholar 

Liu, C. et al. Palladium-catalyzed cascade cyclization for the synthesis of fused benzo-aza-oxa-[5-6-5] tetracycles. Angew. Chem. Int. Ed. 61, e202215020 (2022).

Article  CAS  Google Scholar 

Klose, I., Di Mauro, G., Kaldre, D. & Maulide, N. Inverse hydride shuttle catalysis enables the stereoselective one-step synthesis of complex frameworks. Nat. Chem. 14, 1306–1310 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noyori, R., Tokunaga, M. & Kitamura, M. Stereoselective organic synthesis via dynamic kinetic resolution. Bull. Chem. Soc. Jpn. 68, 36–55 (1995).

Article  CAS  Google Scholar 

Huerta, F. F., Minidis, A. B. E. & Bäckvall, J. E. Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem. Soc. Rev. 30, 321–331 (2001).

Article  CAS  Google Scholar 

Steinreiber, J., Faber, K. & Griengl, H. De‐racemization of enantiomers versus de-epimerization of diastereomers-classification of dynamic kinetic asymmetric transformations (DYKAT). Chem. Eur. J. 14, 8060–8072 (2008).

Article  CAS  PubMed  Google Scholar 

Pellissier, H. Chirality from Dynamic Kinetic Resolution (The Royal Society of Chemistry, 2011); https://doi.org/10.1039/9781849732673

Ruan, L.-X., Sun, B., Liu, J.-M. & Shi, S.-L. Dynamic kinetic asymmetric arylation and alkenylation of ketones. Science 379, 662–670 (2023).

Article  CAS  PubMed  Google Scholar 

DeHovitz, J. S. et al. Static to inducibly dynamic stereocontrol: the convergent use of racemic β-substituted ketones. Science 369, 1113–1118 (2020).

Article  CAS  PubMed  Google Scholar 

Qi, X., Liu, S. & Lan, Y. Computational studies on an aminomethylation precursor: (Xantphos)Pd(CH2NBn2)+. Organometallics 35, 1582–1585 (2016).

Article  CAS  Google Scholar 

Yu, B., Zou, S., Liu, H. & Huang, H. Palladium-catalyzed ring-closing reaction via C–N bond metathesis for rapid construction of saturated N-heterocycles. J. Am. Chem. Soc. 142, 18341–18345 (2020).

Article  CAS  PubMed  Google Scholar 

Zhang, H., Jiang, T., Zhang, J. & Huang, H. Catalytic reactions directed by a structurally well-defined aminomethyl cyclopalladated complex. Acc. Chem. Res. 54, 4305–4318 (2021).

Article  CAS  PubMed  Google Scholar 

Zou, S., Zhao, Z. & Huang, H. Palladium‐catalyzed aminoalkylative cyclization enables modular synthesis of exocyclic 1,3-dienes. Angew. Chem. Int. Ed. 62, e202311603 (2023).

Article  CAS  Google Scholar 

Cai, S., Zhao, Z., Yang, G. & Huang, H. Dynamic amine sorting enables multiselective construction of unsymmetrical chiral diamines. Nat. Chem. 16, 1972–1981 (2024).

Article  CAS  PubMed  Google Scholar 

Hamilton, J. Y., Rössler, S. L. & Carreira, E. M. Enantio- and diastereoselective spiroketalization catalyzed by chiral iridium complex. J. Am. Chem. Soc. 139, 8082–8085 (2017).

Article  CAS  PubMed  Google Scholar 

Zhang, G., Gao, B. & Huang, H. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines. Angew. Chem. Int. Ed. 54, 7657–7661 (2015).

Article  CAS  Google Scholar 

Witherup, K. M. et al. Martinelline and martinellic acid, novel G-protein linked receptor antagonists from the tropical plant Martinella iquitosensis (Bignoniaceae). J. Am. Chem. Soc. 117, 6682–6685 (1995).

Article  CAS  Google Scholar 

Haarr, M. B. & Sydnes, M. O. Synthesis of the hexahydropyrrolo-[3,2-c]-quinoline core structure and strategies for further elaboration to martinelline, martinellic acid, incargranine b, and seneciobipyrrolidine. Molecules 26, 341 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, D., Xia, C., Jiang, J. & Zhang, J. First total synthesis of martinellic acid, a naturally occurring bradykinin receptor antagonist. Org. Lett. 3, 2189–2191 (2001).

Article  CAS  PubMed  Google Scholar 

Ikeda, S., Shibuya, M. & Iwabuchi, Y. Asymmetric total synthesis of martinelline and martinellic acid. Chem. Commun. 504–506 (2007).

Davies, S. G. et al. Asymmetric synthesis of (−)-martinellic acid. Org. Lett. 15, 2050–2053 (2013).

Article  CAS  PubMed  Google Scholar 

Pappoppula, M. & Aponick, A. Enantioselective total synthesis of (−)-martinellic acid. Angew. Chem. Int. Ed. 54, 15827–15830 (2015).

Article  CAS  Google Scholar 

Comments (0)

No login
gif