Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).
Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).
Article CAS PubMed PubMed Central Google Scholar
Mattson, M. P. & Arumugam, T. V. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 27, 1176–1199 (2018).
Article CAS PubMed PubMed Central Google Scholar
Sherwood, C. C. et al. Evolution of increased glia–neuron ratios in the human frontal cortex. Proc. Natl Acad. Sci. USA 103, 13606–13611 (2006).
Article CAS PubMed PubMed Central Google Scholar
Giugliano, M., Negrello, M. & Linaro, D. Computational Modelling of the Brain: Modelling Approaches to Cells, Circuits and Networks 87–103 (Springer International Publishing, 2022).
De Pittà, M. & Berry, H. Computational Glioscience 3–35 (Springer International Publishing, 2019).
Fields, R. D. & Stevens-Graham, B. New insights into neuron–glia communication. Science 298, 556–562 (2002).
Article CAS PubMed PubMed Central Google Scholar
Fields, R. D., Woo, D. H. & Basser, P. J. Glial regulation of the neuronal connectome through local and long-distant communication. Neuron 86, 374–386 (2015).
Article CAS PubMed PubMed Central Google Scholar
Raiders, S. et al. Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior. eLife 10, e63532 (2021).
Article CAS PubMed PubMed Central Google Scholar
Vicidomini, C., Guo, N. & Sahay, A. Communication, cross talk, and signal integration in the adult hippocampal neurogenic niche. Neuron 105, 220–235 (2020).
Article CAS PubMed PubMed Central Google Scholar
Poitelon, Y. et al. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat. Commun. 6, 8303 (2015).
Article CAS PubMed Google Scholar
Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).
Article CAS PubMed PubMed Central Google Scholar
Liu, P. et al. Mitopherogenesis, a form of mitochondria-specific ectocytosis, regulates sperm mitochondrial quantity and fertility. Nat. Cell Biol. 25, 1625–1636 (2023).
Article CAS PubMed Google Scholar
Raab-Traub, N. & Dittmer, D. P. Viral effects on the content and function of extracellular vesicles. Nat. Rev. Microbiol. 15, 559–572 (2017).
Article CAS PubMed PubMed Central Google Scholar
Abou Harb, M., Meckes, D. G. Jr. & Sun, L. Epstein–Barr virus LMP1 enhances levels of large extracellular vesicle-associated PD-L1. J. Virol. 97, e0021923 (2023).
Kalluri, R. & McAndrews, K. M. The role of extracellular vesicles in cancer. Cell 186, 1610–1626 (2023).
Article CAS PubMed PubMed Central Google Scholar
Patel, M. R. & Weaver, A. M. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep. 34, 108829 (2021).
Article CAS PubMed PubMed Central Google Scholar
Song, L., Tian, X. & Schekman, R. Extracellular vesicles from neurons promote neural induction of stem cells through cyclin D1. J. Cell Biol. 220, e202101075 (2021).
Article CAS PubMed PubMed Central Google Scholar
Pastuzyn, E. D. et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 172, 275–288 (2018).
Article CAS PubMed PubMed Central Google Scholar
Vilcaes, A. A., Chanaday, N. L. & Kavalali, E. T. Interneuronal exchange and functional integration of synaptobrevin via extracellular vesicles. Neuron 109, 971–983 (2021).
Article CAS PubMed PubMed Central Google Scholar
Antonucci, F. et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 31, 1231–1240 (2012).
Article CAS PubMed PubMed Central Google Scholar
Singhvi, A. & Shaham, S. Glia–neuron interactions in Caenorhabditis elegans. Annu. Rev. Neurosci. 42, 149–168 (2019).
Article CAS PubMed Google Scholar
Oikonomou, G. & Shaham, S. The glia of Caenorhabditis elegans. Glia 59, 1253–1263 (2011).
Ward, S., Thomson, N., White, J. G. & Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 160, 313–337 (1975).
Article CAS PubMed Google Scholar
Bacaj, T., Tevlin, M., Lu, Y. & Shaham, S. Glia are essential for sensory organ function in C. elegans. Science 322, 744–747 (2008).
Article CAS PubMed PubMed Central Google Scholar
Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527 (1993).
Article CAS PubMed Google Scholar
Toth, M. L. et al. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system. J. Neurosci. 32, 8778–8790 (2012).
Article CAS PubMed PubMed Central Google Scholar
E, L. et al. An antimicrobial peptide and its neuronal receptor regulate dendrite degeneration in aging and infection. Neuron 97, 125–138 (2018).
Article CAS PubMed Google Scholar
Troemel, E. R., Kimmel, B. E. & Bargmann, C. I. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91, 161–169 (1997).
Article CAS PubMed Google Scholar
Kaletsky, R. et al. The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. Nature 529, 92–96 (2016).
Article CAS PubMed Google Scholar
Bhattacharya, A., Aghayeva, U., Berghoff, E. G. & Hobert, O. Plasticity of the electrical connectome of C. elegans. Cell 176, 1174–1189 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wu, J. et al. GABA signaling triggered by TMC-1/Tmc delays neuronal aging by inhibiting the PKC pathway in C. elegans. Sci. Adv. 8, eadc9236 (2022).
Comments (0)