Lagarde, S. et al. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain 141, 2966–2980 (2018).
Hermann, B. P. et al. Cognitive prognosis in chronic temporal lobe epilepsy. Ann. Neurol. 60, 80–87 (2006).
Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000).
Article CAS PubMed Google Scholar
Perrine, K. et al. The relationship of neuropsychological functioning to quality of life in epilepsy. Arch. Neurol. 52, 997–1003 (1995).
Article CAS PubMed Google Scholar
Boylan, L. S. et al. Depression but not seizure frequency predicts quality of life in treatment-resistant epilepsy. Neurology 62, 258–261 (2004).
Article CAS PubMed Google Scholar
Reed, C. M. et al. Extent of single-neuron activity modulation by hippocampal interictal discharges predicts declarative memory disruption in humans. J. Neurosci. 40, 682–693 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kleen, J. K. et al. Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology 81, 18–24 (2013).
Article CAS PubMed PubMed Central Google Scholar
Ortinski, P. & Meador, K. J. Cognitive side effects of antiepileptic drugs. Epilepsy Behav. 5, 60–65 (2004).
Chvojka, J. et al. The role of interictal discharges in ictogenesis—a dynamical perspective. Epilepsy Behav. 121, 106591 (2021).
Dempsey, E. W. & Morison, R. S. The production of rhythmically recurrent cortical potentials after localized thalamic stimulation. Am. J. Physiol. 135, 293–300 (1941).
Chase, M. H., Nakamura, Y., Clemente, C. D. & Sterman, M. B. Afferent vagal stimulation: neurographic correlates of induced EEG synchronization and desynchronization. Brain Res. 5, 236–249 (1967).
Article CAS PubMed Google Scholar
Khodagholy, D., Ferrero, J. J., Park, J., Zhao, Z. & Gelinas, J. N. Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends Neurosci. 45, 968–983 (2022).
Article CAS PubMed PubMed Central Google Scholar
Jastrzebska‐Perfect, P. et al. Translational neuroelectronics. Adv. Funct. Mater. 30, 1909165 (2020).
Krook-Magnuson, E., Gelinas, J. N., Soltesz, I. & Buzsáki, G. Neuroelectronics and biooptics: closed-loop technologies in neurological disorders. JAMA Neurol. 72, 823–829 (2015).
Article PubMed PubMed Central Google Scholar
Morrell, M. J. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295–1304 (2011).
Bergey, G. K. et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 84, 810–817 (2015).
Article CAS PubMed PubMed Central Google Scholar
Toffa, D. H., Touma, L., El Meskine, T., Bouthillier, A. & Nguyen, D. K. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: a critical review. Seizure 83, 104–123 (2020).
Chan, A. Y., Rolston, J. D., Rao, V. R. & Chang, E. F. Effect of neurostimulation on cognition and mood in refractory epilepsy. Epilepsia Open 3, 18–29 (2018).
Article PubMed PubMed Central Google Scholar
Bui, A. D. et al. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science 359, 787–790 (2018).
Article CAS PubMed PubMed Central Google Scholar
Khodagholy, D., Gelinas, J. N. & Buzsáki, G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358, 369–372 (2017).
Article CAS PubMed PubMed Central Google Scholar
Siapas, A. G. & Wilson, M. A. Coordinated Interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).
Article CAS PubMed Google Scholar
Girardeau, G. et al. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).
Article CAS PubMed Google Scholar
Maingret, N., Girardeau, G., Todorova, R., Goutierre, M. & Zugaro, M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat. Neurosci. 19, 959–964 (2016).
Article CAS PubMed Google Scholar
Gelinas, J. N., Khodagholy, D., Thesen, T., Devinsky, O. & Buzsáki, G. Interictal epileptiform discharges induce hippocampal–cortical coupling in temporal lobe epilepsy. Nat. Med. 22, 641–648 (2016).
Article CAS PubMed PubMed Central Google Scholar
Yu, H. et al. Interaction of interictal epileptiform activity with sleep spindles is associated with cognitive deficits and adverse surgical outcome in pediatric focal epilepsy. Epilepsia 65, 190–203 (2024).
Dahal, P. et al. Interictal epileptiform discharges shape large-scale intercortical communication. Brain 142, 3502–3513 (2019).
Article PubMed PubMed Central Google Scholar
Sákovics, A. et al. Prolongation of cortical sleep spindles during hippocampal interictal epileptiform discharges in epilepsy patients. Epilepsia 63, 2256 (2022).
Article PubMed PubMed Central Google Scholar
Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).
Article PubMed PubMed Central Google Scholar
Shatskikh, T. N., Raghavendra, M., Zhao, Q., Cui, Z. & Holmes, G. L. Electrical induction of spikes in the hippocampus impairs recognition capacity and spatial memory in rats. Epilepsy Behav. 9, 549–556 (2006).
Bartolomei, F. et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia 58, 1131–1147 (2017).
Sheybani, L. et al. Wake slow waves in focal human epilepsy impact network activity and cognition. Nat. Commun. 14, 7397 (2023).
Article CAS PubMed PubMed Central Google Scholar
Sheybani, L. et al. Slow oscillations open susceptible time windows for epileptic discharges. Epilepsia 62, 2357 (2021).
Article PubMed PubMed Central Google Scholar
Okadome, T. et al. The effect of interictal epileptic discharges and following spindles on motor sequence learning in epilepsy patients. Front. Neurol. 13, 979333 (2022).
Comments (0)