Ahmad T, Gupta G, Sharma A, Kaur B, Alsahli AA, Ahmad P (2020) Multivariate statistical approach to study spatiotemporal variations in water quality of a Himalayan urban fresh Water Lake. Water 12(9):2365. https://doi.org/10.3390/w12092365
Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability. Chapman and Hall, London
Aitchison J (2003) A concise guide to compositional data analysis. In: Compositional data analysis workshop, 73–81
Alhaidari S, Zohdy M (2019) Network anomaly detection using two-dimensional hidden Markov model based Viterbi algorithm. In: 2019 IEEE international conference on artificial intelligence testing (AITest), 17–18. IEEE
Aminikhanghahi S, Cook DJ (2017) A survey of methods for time series change point detection. Knowl Inf Syst 51(2):339–367. https://doi.org/10.1007/s10115-016-0987-z
Arıman S, Soydan-Oksal NG, Beden N, Ahmadzai H (2024) Assessment of groundwater quality through hydrochemistry using principal components analysis (PCA) and water quality index (WQI) in Kızılırmak delta, Turkey. Water 16(11):1570. https://doi.org/10.3390/w16111570
Azzeddine R, Abdelmalek D, Ewuzie U, Faouzi Z, Taha-Hocine D (2024) Compositional data analysis (CoDA) and geochemical signatures of the terminal complex aquifer in an arid zone (northeastern Algeria). J Afr Earth Sci 210:105162. https://doi.org/10.1016/j.jafrearsci.2023.105162
Benkov I, Varbanov M, Venelinov T, Tsakovski S (2023) Principal component analysis and the water quality index—a powerful tool for surface water quality assessment: a case study on Struma River Catchment, Bulgaria. Water 15(10):1961. https://doi.org/10.3390/w15101961
Bilgin A (2018) Evaluation of surface water quality by using Canadian council of ministers of the environment water quality index (CCME WQI) method and discriminant analysis method: a case study Coruh River Basin. Environ Monit Assess 190:1–11. https://doi.org/10.1007/s10661-018-6927-5
Blanco-Mallo E, Morán-Fernández L, Remeseiro B, Bolón-Canedo V (2023) Do all roads lead to Rome? Studying distance measures in the context of machine learning. Pattern Recogn 141:109646. https://doi.org/10.1016/j.patcog.2023.109646
Bobba S, Zinfollino N, Fissore D (2021) Application of near-infrared spectroscopy to statistical control in freeze-drying processes. Eur J Pharm Biopharm 168:26–37. https://doi.org/10.1016/j.ejpb.2021.08.009
Boedeker P, Kearns NT (2019) Linear discriminant analysis for prediction of group membership: a user-friendly primer. Adv Methods Pract Psychol Sci 2(3):250–263. https://doi.org/10.1177/2515245919849378
Brito I, Gonçalves AM, Pedra A (2024) Risk assessment for the surface water quality evaluation of a hydrological basin. Stoch Env Res Risk Assess 38(11):4527–4553. https://doi.org/10.1007/s00477-024-02817-w
Carvalho DV, Pereira EM, Cardoso JS (2019) Machine learning interpretability: a survey on methods and metrics. Electronics 8(8):832. https://doi.org/10.3390/electronics8080832
Celebi ME (2014) Partitional clustering algorithms. Springer, Berlin
Chen L, Liu L, Liu S, Shi Z, Shi C (2025) The application of remote sensing technology in inland water quality monitoring and water environment science: Recent progress and perspectives. Remote Sens 17(4):667. https://doi.org/10.3390/rs17040667
Chen Q, Mei K, Dahlgren RA, Wang T, Gong J, Zhang M (2016) Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression. Sci Total Environ 572:450–466. https://doi.org/10.1016/j.scitotenv.2016.08.052
Chen Z, Zhou Q, Lv J, Jiang Y, Yang H, Yang H, Mei S, Jia Z, Zhang H, Jin Y, Liu L, Shen R (2023) Assessment of groundwater quality using APCS-MLR model: a case study in the pilot promoter region of Yangtze river Delta integration demonstration zone, China. Water 15(2):225. https://doi.org/10.3390/w15020225
Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition. J Official Stat 6(1):3–73
Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610. https://doi.org/10.1080/01621459.1988.10478639
Cleveland WS, Devlin SJ, Grosse E (1988) Regression by local fitting: methods, properties, and computational algorithms. J Econ 37(1):87–114. https://doi.org/10.1016/0304-4076(88)90077-2
Conte LC, Bayer DM, Bayer FM (2019) Bootstrap Pettitt test for detecting change points in hydroclimatological data: case study of Itaipu Hydroelectric Plant, Brazil. Hydrol Sci J 64(11):1312–1326. https://doi.org/10.1080/02626667.2019.1632461
Corradin R, Danese L, Ongaro A (2022) Bayesian nonparametric change point detection for multivariate time series with missing observations. Int J Approx Reason 143:26–43. https://doi.org/10.1016/j.ijar.2021.12.019
Coura MR, Cordova JE, Oliveira SC (2021) Analysis of changes in the quality of surface water after filling of hydroelectric reservoirs in the Amazon, Brazil. Environ Process 8(2):573–592. https://doi.org/10.1007/s40710-021-00508-0
del Castillo AF, Garibay MV, Díaz-Vázquez D, Yebra-Montes C, Brown LE, Johnson A, Garcia-Gonzalez A, Gradilla-Hernández MS (2024) Improving river water quality prediction with hybrid machine learning and temporal analysis. Eco Inform 82:102655. https://doi.org/10.1016/j.ecoinf.2024.102655
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B Methodol 39(1):1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
Dilmi S, Ladjal M (2021) A novel approach for water quality classification based on the integration of deep learning and feature extraction techniques. Chemom Intell Lab Syst 214:104329. https://doi.org/10.1016/j.chemolab.2021.104329
Dimri T, Ahmad S, Sharif M (2020) Time series analysis of climate variables using seasonal ARIMA approach. J Earth Syst Sci 129:1–16. https://doi.org/10.1007/s12040-020-01408-x
Domenighini A, Giordano M (2009) Fourier transform infrared spectroscopy of microalgae as a novel tool for biodiversity studies, species identification, and the assessment of water quality 1. J Phycol 45(2):522–531. https://doi.org/10.1111/j.1529-8817.2009.00662.x
Dorado-Guerra DY, Paredes-Arquiola J, Pérez-Martín MÁ, Corzo-Pérez G, Ríos-Rojas L (2023) Effect of climate change on the water quality of Mediterranean rivers and alternatives to improve its status. J Environ Manage 348:119069. https://doi.org/10.1016/j.jenvman.2023.119069
Du X, Shao F, Wu S, Zhang H, Xu S (2017) Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Environ Monit Assess 189:1–12. https://doi.org/10.1007/s10661-017-6035-y
du Plessis A (2022) Persistent degradation: global water quality challenges and required actions. One Earth 5(2):129–131. https://doi.org/10.1016/j.oneear.2022.01.005
Eddy SR (2004) What is a hidden Markov model? Nat Biotechnol 22(10):1315–1316. https://doi.org/10.1038/nbt1004-1315
Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Chapman and Hall/CRC, Boca Raton
Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geol 37:795–828. https://doi.org/10.1007/s11004-005-7381-9
Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300. https://doi.org/10.1023/A:1023818214614
Ehteram M, Ahmed AN, Sherif M, El-Shafie A (2024) An advanced deep learning model for predicting water quality index. Ecol Ind 160:111806. https://doi.org/10.1016/j.ecolind.2024.111806
El Najjar P, Kassouf A, Probst A, Probst JL, Ouaini N, Daou C, El Azzi D (2019) High-frequency monitoring of surface water quality at the outlet of the Ibrahim river (Lebanon): a multivariate assessment. Ecol Ind 104:13–23. https://doi.org/10.1016/j.ecolind.2019.04.061
Ewuzie U, Nnorom IC, Ugbogu O, Onwuka CV (2021) Hydrogeochemical, microbial and compositional analysis of data from surface and groundwater sources in Southeastern Nigeria. J Geochem Explor 224:106737. https://doi.org/10.1016/j.gexplo.2021.106737
Comments (0)