Statistical analysis techniques in water quality monitoring: a review

Ahmad T, Gupta G, Sharma A, Kaur B, Alsahli AA, Ahmad P (2020) Multivariate statistical approach to study spatiotemporal variations in water quality of a Himalayan urban fresh Water Lake. Water 12(9):2365. https://doi.org/10.3390/w12092365

Article  CAS  Google Scholar 

Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability. Chapman and Hall, London

Google Scholar 

Aitchison J (2003) A concise guide to compositional data analysis. In: Compositional data analysis workshop, 73–81

Alhaidari S, Zohdy M (2019) Network anomaly detection using two-dimensional hidden Markov model based Viterbi algorithm. In: 2019 IEEE international conference on artificial intelligence testing (AITest), 17–18. IEEE

Aminikhanghahi S, Cook DJ (2017) A survey of methods for time series change point detection. Knowl Inf Syst 51(2):339–367. https://doi.org/10.1007/s10115-016-0987-z

Article  Google Scholar 

Arıman S, Soydan-Oksal NG, Beden N, Ahmadzai H (2024) Assessment of groundwater quality through hydrochemistry using principal components analysis (PCA) and water quality index (WQI) in Kızılırmak delta, Turkey. Water 16(11):1570. https://doi.org/10.3390/w16111570

Article  CAS  Google Scholar 

Azzeddine R, Abdelmalek D, Ewuzie U, Faouzi Z, Taha-Hocine D (2024) Compositional data analysis (CoDA) and geochemical signatures of the terminal complex aquifer in an arid zone (northeastern Algeria). J Afr Earth Sci 210:105162. https://doi.org/10.1016/j.jafrearsci.2023.105162

Article  CAS  Google Scholar 

Benkov I, Varbanov M, Venelinov T, Tsakovski S (2023) Principal component analysis and the water quality index—a powerful tool for surface water quality assessment: a case study on Struma River Catchment, Bulgaria. Water 15(10):1961. https://doi.org/10.3390/w15101961

Article  CAS  Google Scholar 

Bilgin A (2018) Evaluation of surface water quality by using Canadian council of ministers of the environment water quality index (CCME WQI) method and discriminant analysis method: a case study Coruh River Basin. Environ Monit Assess 190:1–11. https://doi.org/10.1007/s10661-018-6927-5

Article  CAS  Google Scholar 

Blanco-Mallo E, Morán-Fernández L, Remeseiro B, Bolón-Canedo V (2023) Do all roads lead to Rome? Studying distance measures in the context of machine learning. Pattern Recogn 141:109646. https://doi.org/10.1016/j.patcog.2023.109646

Article  Google Scholar 

Bobba S, Zinfollino N, Fissore D (2021) Application of near-infrared spectroscopy to statistical control in freeze-drying processes. Eur J Pharm Biopharm 168:26–37. https://doi.org/10.1016/j.ejpb.2021.08.009

Article  CAS  Google Scholar 

Boedeker P, Kearns NT (2019) Linear discriminant analysis for prediction of group membership: a user-friendly primer. Adv Methods Pract Psychol Sci 2(3):250–263. https://doi.org/10.1177/2515245919849378

Article  Google Scholar 

Brito I, Gonçalves AM, Pedra A (2024) Risk assessment for the surface water quality evaluation of a hydrological basin. Stoch Env Res Risk Assess 38(11):4527–4553. https://doi.org/10.1007/s00477-024-02817-w

Article  Google Scholar 

Carvalho DV, Pereira EM, Cardoso JS (2019) Machine learning interpretability: a survey on methods and metrics. Electronics 8(8):832. https://doi.org/10.3390/electronics8080832

Article  Google Scholar 

Celebi ME (2014) Partitional clustering algorithms. Springer, Berlin

Google Scholar 

Chen L, Liu L, Liu S, Shi Z, Shi C (2025) The application of remote sensing technology in inland water quality monitoring and water environment science: Recent progress and perspectives. Remote Sens 17(4):667. https://doi.org/10.3390/rs17040667

Article  Google Scholar 

Chen Q, Mei K, Dahlgren RA, Wang T, Gong J, Zhang M (2016) Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression. Sci Total Environ 572:450–466. https://doi.org/10.1016/j.scitotenv.2016.08.052

Article  CAS  Google Scholar 

Chen Z, Zhou Q, Lv J, Jiang Y, Yang H, Yang H, Mei S, Jia Z, Zhang H, Jin Y, Liu L, Shen R (2023) Assessment of groundwater quality using APCS-MLR model: a case study in the pilot promoter region of Yangtze river Delta integration demonstration zone, China. Water 15(2):225. https://doi.org/10.3390/w15020225

Article  CAS  Google Scholar 

Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition. J Official Stat 6(1):3–73

Google Scholar 

Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610. https://doi.org/10.1080/01621459.1988.10478639

Article  Google Scholar 

Cleveland WS, Devlin SJ, Grosse E (1988) Regression by local fitting: methods, properties, and computational algorithms. J Econ 37(1):87–114. https://doi.org/10.1016/0304-4076(88)90077-2

Article  Google Scholar 

Conte LC, Bayer DM, Bayer FM (2019) Bootstrap Pettitt test for detecting change points in hydroclimatological data: case study of Itaipu Hydroelectric Plant, Brazil. Hydrol Sci J 64(11):1312–1326. https://doi.org/10.1080/02626667.2019.1632461

Article  Google Scholar 

Corradin R, Danese L, Ongaro A (2022) Bayesian nonparametric change point detection for multivariate time series with missing observations. Int J Approx Reason 143:26–43. https://doi.org/10.1016/j.ijar.2021.12.019

Article  Google Scholar 

Coura MR, Cordova JE, Oliveira SC (2021) Analysis of changes in the quality of surface water after filling of hydroelectric reservoirs in the Amazon, Brazil. Environ Process 8(2):573–592. https://doi.org/10.1007/s40710-021-00508-0

Article  CAS  Google Scholar 

del Castillo AF, Garibay MV, Díaz-Vázquez D, Yebra-Montes C, Brown LE, Johnson A, Garcia-Gonzalez A, Gradilla-Hernández MS (2024) Improving river water quality prediction with hybrid machine learning and temporal analysis. Eco Inform 82:102655. https://doi.org/10.1016/j.ecoinf.2024.102655

Article  Google Scholar 

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B Methodol 39(1):1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

Article  Google Scholar 

Dilmi S, Ladjal M (2021) A novel approach for water quality classification based on the integration of deep learning and feature extraction techniques. Chemom Intell Lab Syst 214:104329. https://doi.org/10.1016/j.chemolab.2021.104329

Article  CAS  Google Scholar 

Dimri T, Ahmad S, Sharif M (2020) Time series analysis of climate variables using seasonal ARIMA approach. J Earth Syst Sci 129:1–16. https://doi.org/10.1007/s12040-020-01408-x

Article  Google Scholar 

Domenighini A, Giordano M (2009) Fourier transform infrared spectroscopy of microalgae as a novel tool for biodiversity studies, species identification, and the assessment of water quality 1. J Phycol 45(2):522–531. https://doi.org/10.1111/j.1529-8817.2009.00662.x

Article  CAS  Google Scholar 

Dorado-Guerra DY, Paredes-Arquiola J, Pérez-Martín MÁ, Corzo-Pérez G, Ríos-Rojas L (2023) Effect of climate change on the water quality of Mediterranean rivers and alternatives to improve its status. J Environ Manage 348:119069. https://doi.org/10.1016/j.jenvman.2023.119069

Article  CAS  Google Scholar 

Du X, Shao F, Wu S, Zhang H, Xu S (2017) Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Environ Monit Assess 189:1–12. https://doi.org/10.1007/s10661-017-6035-y

Article  Google Scholar 

du Plessis A (2022) Persistent degradation: global water quality challenges and required actions. One Earth 5(2):129–131. https://doi.org/10.1016/j.oneear.2022.01.005

Article  Google Scholar 

Eddy SR (2004) What is a hidden Markov model? Nat Biotechnol 22(10):1315–1316. https://doi.org/10.1038/nbt1004-1315

Article  CAS  Google Scholar 

Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Chapman and Hall/CRC, Boca Raton

Book  Google Scholar 

Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geol 37:795–828. https://doi.org/10.1007/s11004-005-7381-9

Article  Google Scholar 

Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300. https://doi.org/10.1023/A:1023818214614

Article  Google Scholar 

Ehteram M, Ahmed AN, Sherif M, El-Shafie A (2024) An advanced deep learning model for predicting water quality index. Ecol Ind 160:111806. https://doi.org/10.1016/j.ecolind.2024.111806

Article  Google Scholar 

El Najjar P, Kassouf A, Probst A, Probst JL, Ouaini N, Daou C, El Azzi D (2019) High-frequency monitoring of surface water quality at the outlet of the Ibrahim river (Lebanon): a multivariate assessment. Ecol Ind 104:13–23. https://doi.org/10.1016/j.ecolind.2019.04.061

Article  CAS  Google Scholar 

Ewuzie U, Nnorom IC, Ugbogu O, Onwuka CV (2021) Hydrogeochemical, microbial and compositional analysis of data from surface and groundwater sources in Southeastern Nigeria. J Geochem Explor 224:106737. https://doi.org/10.1016/j.gexplo.2021.106737

Article  CAS 

Comments (0)

No login
gif