Dimitrov D.S. 2004. Virus entry: Molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2 (2), 109‒122. https://doi.org/10.1038/nrmicro817
Article PubMed PubMed Central CAS Google Scholar
Melby T., Westby M. 2009. Inhibitors of viral entry. Handb. Exp. Pharmacol. 189, 177‒202. https://doi.org/10.1007/978-3-540-79086-0_7
Eggink D., Bontjer I., de Taeye S.W., Langedijk J.P.M., Berkhout B., Sanders R.W. 2019. HIV-1 anchor inhibitors and membrane fusion inhibitors target distinct but overlapping steps in virus entry. J. Biol. Chem. 294 (15), 5736‒5746. https://doi.org/10.1074/jbc.RA119.007360
Article PubMed PubMed Central CAS Google Scholar
Groß R., Dias Loiola L.M., Issmail L., Uhlig N., Eberlein V., Conzelmann C., Olari L.R., Rauch L., Lawrenz J., Weil T., Müller J.A., Cardoso M.B., Gilg A., Larsson O., Höglund U., Pålsson S.A., Tvilum A.S., Løvschall K.B., Kristensen M.M., Spetz A.L., Hontonnou F., Galloux M., Grunwald T., Zelikin A.N., Münch J. 2022. Macromolecular viral entry inhibitors as broad-spectrum first-line antivirals with activity against SARS-CoV-2. Adv. Sci. (Weinh). 9 (20), e2201378. https://doi.org/10.1002/advs.202201378
Gaucherand L., Gaglia M.M. 2022. The role of viral RNA degrading factors in shutoff of host gene expression. Annu. Rev. Virol. 9 (1), 213‒238. https://doi.org/10.1146/annurev-virology-100120-012345
Article PubMed PubMed Central CAS Google Scholar
Du S., Liu X., Cai Q. 2018. Viral-mediated mRNA degradation for pathogenesis. Biomedicines. 6 (4), 111. https://doi.org/10.3390/biomedicines6040111
Article PubMed PubMed Central CAS Google Scholar
Moore J.P., Doms R.W. 2003. The entry of entry inhibitors: A fusion of science and medicine. Proc. Natl. Acad. Sci. U. S. A. 100 (19), 10598‒10602. https://doi.org/10.1073/pnas.1932511100
Article PubMed PubMed Central CAS Google Scholar
Lazzarin A. 2005. Enfuvirtide: The first HIV fusion inhibitor. Expert Opin. Pharmacother. 6 (3), 453‒464. https://doi.org/10.1517/14656566.6.3.453
Article PubMed CAS Google Scholar
Dorr P., Westby M., Dobbs S., Griffin P., Irvine B., Macartney M., Mori J., Rickett G., Smith-Bur-chnell C., Napier C., Webster R., Armour D., Price D., Stammen B., Wood A., Perros M. 2005. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 49 (11), 4721‒4732. https://doi.org/10.1128/AAC.49.11.4721-4732.2005
Article PubMed PubMed Central CAS Google Scholar
Woollard S.M., Kanmogne G.D. 2015. Maraviroc: A review of its use in HIV infection and beyond. Drug Des. Dev. Ther. 9, 5447‒5468. https://doi.org/10.2147/DDDT.S90580
Su S., Xu W., Jiang S. 2022. Virus entry inhibitors: Past, present, and future. In Virus Entry Inhibitors. Advances in Experimental Medicine and Biology. Jiang S., Lu L., Eds. Singapore: Springer, Vol. 1366, pp. 1‒11. https://doi.org/10.1007/978-981-16-8702-0_1
Silva-Júnior E.F.D. 2022. Entry Inhibitors of RNA viruses. Curr. Med. Chem. 29 (4), 609‒611. https://doi.org/10.2174/092986732904220207113503
Rey F.A., Lok S.M. 2018. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines. Cell. 172 (6), 1319‒1334. https://doi.org/10.1016/j.cell.2018.02.054
Article PubMed PubMed Central CAS Google Scholar
Maginnis M.S. 2023. β-arrestins and G protein-coupled receptor kinases in viral entry: A graphical review. Cell Signal. 102, 110558. https://doi.org/10.1016/j.cellsig.2022.110558
Article PubMed CAS Google Scholar
Riedel C., Vasishtan D., Siebert C.A., Whittle C., Lehmann M.J., Mothes W., Grünewald K. 2017. Native structure of a retroviral envelope protein and its conformational change upon interaction with the target cell. J. Struct. Biol. 197 (2), 172‒180. https://doi.org/10.1016/j.jsb.2016.06.017
Article PubMed PubMed Central CAS Google Scholar
Herold N., Anders-Ößwein M., Glass B., Eckhardt M., Müller B., Kräusslich H.G. 2014. HIV-1 entry in SupT1-R5, CEM-ss, and primary CD4+ T cells occurs at the plasma membrane and does not require endocytosis. J. Virol. 88 (24), 13956‒13970. https://doi.org/10.1128/JVI.01543-14
Article PubMed PubMed Central CAS Google Scholar
Daecke J., Fackler O.T., Dittmar M.T., Kräusslich H.G. 2005. Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J. Virol. 79 (3), 1581‒1594. https://doi.org/10.1128/JVI.79.3.1581-1594.2005
Article PubMed PubMed Central CAS Google Scholar
van Wilgenburg B., Moore M.D., James W.S., Cowley S.A. 2014. The productive entry pathway of HIV-1 in macrophages is dependent on endocytosis through lipid rafts containing CD4. PLoS One. 9 (1), e86071. https://doi.org/10.1371/journal.pone.0086071
Article PubMed PubMed Central CAS Google Scholar
Chauhan A., Mehla R., Vijayakumar T.S., Handy I. 2014. Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology. 456‒457, 1‒19. https://doi.org/10.1016/j.virol.2014.03.002
Article PubMed CAS Google Scholar
Kalia M., Jameel S. 2011. Virus entry paradigms. Amino Acids. 41 (5), 1147‒1157. https://doi.org/10.1007/s00726-009-0363-3
Article PubMed CAS Google Scholar
Schornberg K., Matsuyama S., Kabsch K., Delos S., Bouton A., White J. 2006. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol. 80 (8), 4174‒4178. https://doi.org/10.1128/JVI.80.8.4174-4178.2006
Article PubMed PubMed Central CAS Google Scholar
Hunt C.L., Lennemann N.J., Maury W. 2012. Filovirus entry: A novelty in the viral fusion world. Viruses. 4 (2), 258‒275. https://doi.org/10.3390/v4020258
Article PubMed PubMed Central CAS Google Scholar
Schowalter R.M., Chang A., Robach J.G., Buchholz U.J., Dutch R.E. 2009. Low-pH triggering of human metapneumovirus fusion: Essential residues and importance in entry. J. Virol. 83 (3), 1511‒1522. https://doi.org/10.1128/JVI.01381-08
Article PubMed CAS Google Scholar
Kinder J.T., Klimyte E.M., Chang A., Williams J.V., Dutch R.E. 2019. Human metapneumovirus fusion protein triggering: Increasing complexities by analysis of new HMPV fusion proteins. Virology. 531, 248‒254. https://doi.org/10.1016/j.virol.2019.03.003
Article PubMed CAS Google Scholar
Mothes W., Boerger A.L., Narayan S., Cunningham J.M., Young J.A. 2000. Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell. 103 (4), 679‒689. https://doi.org/10.1016/s0092-8674(00)00170-7
Article PubMed CAS Google Scholar
Plemper R.K. 2011. Cell entry of enveloped viruses. Curr. Opin. Virol. 1 (2), 92‒100. https://doi.org/10.1016/j.coviro.2011.06.002
Article PubMed PubMed Central CAS Google Scholar
Ghietto L.M., Gil P.I., Olmos Quinteros P., Gomez E., Piris F.M., Kunda P., Contigiani M., Paglini M.G. 2022. Members of Venezuelan Equine Encephalitis complex entry into host cells by clathrin-mediated endocytosis in a pH-dependent manner. Sci. Rep. 12 (1), 14556. https://doi.org/10.1038/s41598-022-18846-w
Article PubMed PubMed Central CAS Google Scholar
Yang F., Lin S., Ye F., Yang J., Qi J., Chen Z., Lin X., Wang J., Yue D., Cheng Y., Chen Z., Chen H., You Y., Zhang Z., Yang Y., Yang M., Sun H., Li Y., Cao Y., Yang S., Wei Y., Gao G.F., Lu G. 2020. Structural analysis of rabies virus glycoprotein reveals pH-dependent conformational chan
Comments (0)