Enveloped Virus Entry as a Pharmacological Target: Viral Membrane Fusion Machineries and Their Inhibitors

Dimitrov D.S. 2004. Virus entry: Molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2 (2), 109‒122. https://doi.org/10.1038/nrmicro817

Article  PubMed  PubMed Central  CAS  Google Scholar 

Melby T., Westby M. 2009. Inhibitors of viral entry. Handb. Exp. Pharmacol. 189, 177‒202. https://doi.org/10.1007/978-3-540-79086-0_7

Article  CAS  Google Scholar 

Eggink D., Bontjer I., de Taeye S.W., Langedijk J.P.M., Berkhout B., Sanders R.W. 2019. HIV-1 anchor inhibitors and membrane fusion inhibitors target distinct but overlapping steps in virus entry. J. Biol. Chem. 294 (15), 5736‒5746. https://doi.org/10.1074/jbc.RA119.007360

Article  PubMed  PubMed Central  CAS  Google Scholar 

Groß R., Dias Loiola L.M., Issmail L., Uhlig N., Eberlein V., Conzelmann C., Olari L.R., Rauch L., Lawrenz J., Weil T., Müller J.A., Cardoso M.B., Gilg A., Larsson O., Höglund U., Pålsson S.A., Tvilum A.S., Løvschall K.B., Kristensen M.M., Spetz A.L., Hontonnou F., Galloux M., Grunwald T., Zelikin A.N., Münch J. 2022. Macromolecular viral entry inhibitors as broad-spectrum first-line antivirals with activity against SARS-CoV-2. Adv. Sci. (Weinh). 9 (20), e2201378. https://doi.org/10.1002/advs.202201378

Gaucherand L., Gaglia M.M. 2022. The role of viral RNA degrading factors in shutoff of host gene expression. Annu. Rev. Virol. 9 (1), 213‒238. https://doi.org/10.1146/annurev-virology-100120-012345

Article  PubMed  PubMed Central  CAS  Google Scholar 

Du S., Liu X., Cai Q. 2018. Viral-mediated mRNA degradation for pathogenesis. Biomedicines. 6 (4), 111. https://doi.org/10.3390/biomedicines6040111

Article  PubMed  PubMed Central  CAS  Google Scholar 

Moore J.P., Doms R.W. 2003. The entry of entry inhibitors: A fusion of science and medicine. Proc. Natl. Acad. Sci. U. S. A. 100 (19), 10598‒10602. https://doi.org/10.1073/pnas.1932511100

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lazzarin A. 2005. Enfuvirtide: The first HIV fusion inhibitor. Expert Opin. Pharmacother. 6 (3), 453‒464. https://doi.org/10.1517/14656566.6.3.453

Article  PubMed  CAS  Google Scholar 

Dorr P., Westby M., Dobbs S., Griffin P., Irvine B., Macartney M., Mori J., Rickett G., Smith-Bur-chnell C., Napier C., Webster R., Armour D., Price D., Stammen B., Wood A., Perros M. 2005. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 49 (11), 4721‒4732. https://doi.org/10.1128/AAC.49.11.4721-4732.2005

Article  PubMed  PubMed Central  CAS  Google Scholar 

Woollard S.M., Kanmogne G.D. 2015. Maraviroc: A review of its use in HIV infection and beyond. Drug Des. Dev. Ther. 9, 5447‒5468. https://doi.org/10.2147/DDDT.S90580

Article  CAS  Google Scholar 

Su S., Xu W., Jiang S. 2022. Virus entry inhibitors: Past, present, and future. In Virus Entry Inhibitors. Advances in Experimental Medicine and Biology. Jiang S., Lu L., Eds. Singapore: Springer, Vol. 1366, pp. 1‒11. https://doi.org/10.1007/978-981-16-8702-0_1

Silva-Júnior E.F.D. 2022. Entry Inhibitors of RNA viruses. Curr. Med. Chem. 29 (4), 609‒611. https://doi.org/10.2174/092986732904220207113503

Article  PubMed  Google Scholar 

Rey F.A., Lok S.M. 2018. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines. Cell. 172 (6), 1319‒1334. https://doi.org/10.1016/j.cell.2018.02.054

Article  PubMed  PubMed Central  CAS  Google Scholar 

Maginnis M.S. 2023. β-arrestins and G protein-coupled receptor kinases in viral entry: A graphical review. Cell Signal. 102, 110558. https://doi.org/10.1016/j.cellsig.2022.110558

Article  PubMed  CAS  Google Scholar 

Riedel C., Vasishtan D., Siebert C.A., Whittle C., Lehmann M.J., Mothes W., Grünewald K. 2017. Native structure of a retroviral envelope protein and its conformational change upon interaction with the target cell. J. Struct. Biol. 197 (2), 172‒180. https://doi.org/10.1016/j.jsb.2016.06.017

Article  PubMed  PubMed Central  CAS  Google Scholar 

Herold N., Anders-Ößwein M., Glass B., Eckhardt M., Müller B., Kräusslich H.G. 2014. HIV-1 entry in SupT1-R5, CEM-ss, and primary CD4+ T cells occurs at the plasma membrane and does not require endocytosis. J. Virol. 88 (24), 13956‒13970. https://doi.org/10.1128/JVI.01543-14

Article  PubMed  PubMed Central  CAS  Google Scholar 

Daecke J., Fackler O.T., Dittmar M.T., Kräusslich H.G. 2005. Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J. Virol. 79 (3), 1581‒1594. https://doi.org/10.1128/JVI.79.3.1581-1594.2005

Article  PubMed  PubMed Central  CAS  Google Scholar 

van Wilgenburg B., Moore M.D., James W.S., Cowley S.A. 2014. The productive entry pathway of HIV-1 in macrophages is dependent on endocytosis through lipid rafts containing CD4. PLoS One. 9 (1), e86071. https://doi.org/10.1371/journal.pone.0086071

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chauhan A., Mehla R., Vijayakumar T.S., Handy I. 2014. Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology. 456‒457, 1‒19. https://doi.org/10.1016/j.virol.2014.03.002

Article  PubMed  CAS  Google Scholar 

Kalia M., Jameel S. 2011. Virus entry paradigms. Amino Acids. 41 (5), 1147‒1157. https://doi.org/10.1007/s00726-009-0363-3

Article  PubMed  CAS  Google Scholar 

Schornberg K., Matsuyama S., Kabsch K., Delos S., Bouton A., White J. 2006. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol. 80 (8), 4174‒4178. https://doi.org/10.1128/JVI.80.8.4174-4178.2006

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hunt C.L., Lennemann N.J., Maury W. 2012. Filovirus entry: A novelty in the viral fusion world. Viruses. 4 (2), 258‒275. https://doi.org/10.3390/v4020258

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schowalter R.M., Chang A., Robach J.G., Buchholz U.J., Dutch R.E. 2009. Low-pH triggering of human metapneumovirus fusion: Essential residues and importance in entry. J. Virol. 83 (3), 1511‒1522. https://doi.org/10.1128/JVI.01381-08

Article  PubMed  CAS  Google Scholar 

Kinder J.T., Klimyte E.M., Chang A., Williams J.V., Dutch R.E. 2019. Human metapneumovirus fusion protein triggering: Increasing complexities by analysis of new HMPV fusion proteins. Virology. 531, 248‒254. https://doi.org/10.1016/j.virol.2019.03.003

Article  PubMed  CAS  Google Scholar 

Mothes W., Boerger A.L., Narayan S., Cunningham J.M., Young J.A. 2000. Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell. 103 (4), 679‒689. https://doi.org/10.1016/s0092-8674(00)00170-7

Article  PubMed  CAS  Google Scholar 

Plemper R.K. 2011. Cell entry of enveloped viruses. Curr. Opin. Virol. 1 (2), 92‒100. https://doi.org/10.1016/j.coviro.2011.06.002

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ghietto L.M., Gil P.I., Olmos Quinteros P., Gomez E., Piris F.M., Kunda P., Contigiani M., Paglini M.G. 2022. Members of Venezuelan Equine Encephalitis complex entry into host cells by clathrin-mediated endocytosis in a pH-dependent manner. Sci. Rep. 12 (1), 14556. https://doi.org/10.1038/s41598-022-18846-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang F., Lin S., Ye F., Yang J., Qi J., Chen Z., Lin X., Wang J., Yue D., Cheng Y., Chen Z., Chen H., You Y., Zhang Z., Yang Y., Yang M., Sun H., Li Y., Cao Y., Yang S., Wei Y., Gao G.F., Lu G. 2020. Structural analysis of rabies virus glycoprotein reveals pH-dependent conformational chan

Comments (0)

No login
gif