Reid B.M., Permuth J.B., Sellers T.A. 2017. Epidemiology of ovarian cancer: a review. Cancer Biol. Med. 14 (1), 9–32.
Article CAS PubMed PubMed Central Google Scholar
Kaprin A.D., Starinsky V.V., Petrova G.V. 2019. Malignant Neoplasms in Russia in 2018 (Morbidity and Mortality). Moscow: MNIOI im. P.A. Herzen—a branch of the Federal State Budgetary Institution “NMITs Radiology” of the Ministry of Health of Russia.
Tsandekova M.R., Porkhanova N.V., Kutilin D.S. 2020. Molecular characterization of serous ovarian adenocarcinoma: implications for diagnosis and treatment. Modern Probl. Sci. Educ. No. 1. https://science-education.ru/ru/article/view?id=29428.
Meinhold-Heerlein I., Fotopoulou C., Harter P., Kurzeder C., Mustea A., Wimberger P., Hauptmann S., Sehouli J. 2016. The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications. Arch. Gynecol. Obstet. 293 (4), 695–700.
Rooth C. 2013. Ovarian cancer: risk factors, treatment and management. Br. J. Nurs. 22 (17), S23–30.
Swiatly A., Plewa S, Matysiak J., Kokot Z.J. 2018. Mass spectrometry-based proteomics techniques and their application in ovarian cancer research. J. Ovarian Res. 11 (1), 88. https://doi.org/10.1186/s13048-018-0460-6
Article CAS PubMed PubMed Central Google Scholar
Veenstra T.D. 2012. Metabolomics: The final frontier? Genome Med. 4 (4), 40.
Article PubMed PubMed Central Google Scholar
Schmidt D.R., Patel R., Kirsch D.G., Lewis C.A., Vander Heiden M.G., Locasale J.W. 2021. Metabolomics in cancer research and emerging applications in clinical oncology. CA—Cancer J. Clin. 71 (4), 333–358.
Article PubMed PubMed Central Google Scholar
Balcells I., Cirera S., Busk P.K. 2011. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 11 (1), 70.
Article CAS PubMed PubMed Central Google Scholar
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 (7), research0034.
Peltier H.J., Latham G.J. 2008. Normalization of microRNA expression levels in quantitative RT-PCR assays: Identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 14, 844–852.
Article CAS PubMed PubMed Central Google Scholar
Shen Y., Li Y., Ye F., Wang F., Wan X., Lu W., Xie X. 2011. Identification of miR-23a as a novel microRNA normalizer for relative quantification in human uterine cervical tissues. Exp. Mol. Med. 43, 358–366.
Article CAS PubMed PubMed Central Google Scholar
Kutilin D.S., Dimitriadi S.N., Vodolazhsky D.I., Frantsiyants E.M., Kit O.I. 2017. Effect of thermal ischemia-reperfusion on expression of apoptosis-regulating genes in the renal tissue of patients with renal cell carcinoma. Nephrology (St. Petersburg). 21 (1), 80‒86. https://doi.org/10.24884/1561-6274-2017-21-1-80-86
Jones E., Oliphant E., Peterson P. 2001. SciPy: Open source scientific tools for python. http://www.scipy.org/.
Ding J., Li X., Hu H. 2016. TarPmiR: A new approach for microRNA target site prediction. Bioinformatics. 32 (18), 2768–2775.
Article CAS PubMed PubMed Central Google Scholar
Tsandekova M.R., Porkhanova N.V., Kit O.I., Kutilin D.S. 2021. Minimally invasive molecular diagnosis of high and low grade serous ovarian adenocarcinoma. Oncogynecology. 4, 35–50.
Causin R., Pessôa-Pereira D., Souza K., Evangelista A., Reis R., Fregnani J., Marques M. 2019. Identification and performance evaluation of housekeeping genes for microRNA expression normalization by reverse transcription-quantitative PCR using liquid-based cervical cytology samples. Oncol. Lett. 18, 4753–4761.
CAS PubMed PubMed Central Google Scholar
Hanke M., Hoefig K., Merz H., Feller A., Kausch I., Jocham D., Warnecke J., Sczakiel G. 2010. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. 28 (6), 655–661.
Article CAS PubMed Google Scholar
Weber J., Baxter D., Zhang S., Huang D., Huang K., Lee M., Galas D., Wang K. 2010. The microRNA spectrum in 12 body fluids. Clin. Chem. 56 (11), 1733–1741.
Article CAS PubMed PubMed Central Google Scholar
Zafari S., Backes C., Leidinger P., Meese E., Keller A. 2015. Regulatory microRNA networks: Complex patterns of target pathways for disease-related and housekeeping microRNAs. Genomics Proteomics Bioinformatics. 13, 159–168.
Article CAS PubMed PubMed Central Google Scholar
Koundouros N., Poulogiannis G. 2020. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer. 122 (1), 4–22.
Article CAS PubMed Google Scholar
Zhao S., Cheng L., Shi Y., Li J., Yun Q., Yang H. 2021. MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway. Cell Death Dis. 12 (1), 18.
Article CAS PubMed PubMed Central Google Scholar
Zazula R., Moravec M., Pehal F., Nejtek T., Protuš M., Müller M. 2021. Myristic acid serum levels and their significance for diagnosis of systemic inflammatory response, sepsis, and bacteraemia. J. Person. Med. 11 (4), 306.
Nelson D.L, Cox M.M. 2005. Lehninger Principles of Biochemistry. 4th ed. New York: W.H. Freeman.
Matta M., Deubler E., Chajes V., Vozar B., Gunter M.J., Murphy N., Gaudet M.M. 2022. Circulating plasma phospholipid fatty acid levels and breast cancer risk in the Cancer Prevention Study-II Nutrition Cohort. Int. J. Cancer. 151 (12), 2082–2094.
Article CAS PubMed Google Scholar
Aglago E.K., Murphy N., Huybrechts I., Nicolas G., Casagrande C., Fedirko V., Weiderpass E., Rothwell J.A., Dahm C.C., Olsen A., Tjønneland A., Kaaks R., Katzke V., Schulze M.B., Masala G., Agnoli C., Panico S., Tumino R., Sacerdote C., Bueno-de-Mesquita B.H., Derksen J.W.G., Skeie G., Gram I.T., Brustad M., Jakszyn P., Sánchez M.J., Amiano P., Huerta J.M., Ericson U., Wennberg M., Perez-Cornago A., Heath A.K., Jenab M., Chajes V., Gunter M.J. 2021. Dietary intake and plasma phospholipid concentrations of saturated, monounsaturated and trans fatty acids and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition Cohort. Int. J. Cancer. 149 (4), 865–882.
Weir T.L., Manter D.K., Sheflin A.M., Barnett B.A., Heuberger A.L., Ryan E.P. 2013. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One. 8 (8), e70803.
Article CAS PubMed PubMed Central Google Scholar
Cheng Y., Xie G., Chen T., Qiu Y., Zou X., Zheng M., Tan B., Feng B., Dong T., He P., Zhao L., Zhao A., Xu L.X., Zhang Y., Jia W. 2012. Distinct urinary metabolic profile of human colorectal cancer. J. Proteome Res. 11 (2), 1354–1363.
Article CAS PubMed Google Scholar
Ni Y., Xie G., Jia W. 2014. Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J. Proteome Res. 13 (9), 3857–3870.
Article CAS PubMed Google Scholar
Brown D.G., Rao S., Weir T.L., O’Malia J., Bazan M., Brown R.J., Ryan E.P. 2016. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 4, 11.
Article PubMed PubMed Central Google Scholar
Sinha R., Ahn J., Sampson J.N., Shi J., Yu G., Xiong X., Hayes R.B., Goedert J.J. 2016. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One. 11 (3), e0152126.
Article PubMed PubMed Central Google Scholar
Goedert J.J., Sampson J.N., Moore S.C., Xiao Q., Xiong X., Hayes R.B., Ahn J., Shi J., Sinha R. 2014. Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 35 (9), 2089–2096.
Article CAS PubMed PubMed Central Google Scholar
Wang X., Wang J., Rao B., Deng L. 2017. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp. Ther. Med. 13 (6), 2848–2854.
Comments (0)