Akond Z., Alam M., Mollah Md.N.H. 2018. Biomarker identification from RNA-seq data using a robust statistical approach. Bioinformation. 14 (4), 153–163.
Article PubMed PubMed Central Google Scholar
Tang M., Sun J., Shimizu K., Kadota K. 2015. Evaluation of methods for differential expression analysis on multi-group RNA-seq count data. BMC Bioinf. 16 (1), 360.
Barbiero P., Squillero G., Tonda A. 2020. Modeling generalization in machine learning: A methodological and computational study. arXiv. 2006.15680.
Robinson M.D., McCarthy D.J., Smyth G.K. 2010. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26 (1), 139–140.
Article CAS PubMed Google Scholar
Smyth G.K. 2005. Limma: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. New York: Springer.
Benjamini Y., Hochberg Y. 1997. Multiple hypotheses testing with weights. Scand. J. Stat. 24 (3), 407–418.
Holm S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6 (2), 65–70.
Gui J., Tosteson T.D., Borsuk M. 2012. Weighted multiple testing procedures for genomic studies. BioData Mining. 5 (1), 4.
Article PubMed PubMed Central Google Scholar
Basu P., Cai T. T., Das K., Sun W 2018. Weighted false discovery rate control in large-scale multiple testing. J. Am. Stat. Assoc. 113 (523), 1172–1183.
Article CAS PubMed PubMed Central Google Scholar
Mann H.B., Whitney D.R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18 (1), 50–60.
Benjamini Y., Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc., Ser. B (Methodol.). 57 (1), 289–300.
Genovese C.R., Roeder K., Wasserman L. 2006. False discovery control with p-value weighting. Biometrika. 93 (3), 509–524.
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Duchesnay E. 2011. Scikit-learn: Machine learning in python. J. Machine Learning Res. 12, 2825–2830.
Anfinson M., Fitts R.H., Lough J.W., James J.M., Simpson P.M., Handler S.S., Mitchell M.E., Tomita-Mitchell A. 2022. Significance of α-myosin heavy chain (MYH6) variants in hypoplastic left heart syndrome and related cardiovascular diseases. J. Cardiovasc. Dev. Dis. 9 (5), 144.
CAS PubMed PubMed Central Google Scholar
Ntelios D., Meditskou S., Efthimiadis G., Pitsis A., Zegkos T., Parcharidou D., Theotokis P., Alexouda S., Karvounis H., Tzimagiorgis G. 2022. α-Myosin heavy chain (MYH6) in hypertrophic cardiomyopathy: Prominent expression in areas with vacuolar degeneration of myocardial cells. Pathol. Int. 72 (5), 308–310.
Article CAS PubMed Google Scholar
Suzuki T., Saito K., Yoshikawa T., Hirono K., Hata Y., Nishida N., Yasuda K., Nagashima M. 2022. A double heterozygous variant in MYH6 and MYH7 associated with hypertrophic cardiomyopathy in a Japanese family. J. Cardiol. Cases. 25 (4), 213–217.
Michalski M., Świerzko A.S., Pągowska-Klimek I., Niemir Z.I., Mazerant K., Domżalska-Popadiuk I., Moll M., Cedzyński M. 2015. Primary ficolin-3 deficiency—is it associated with increased susceptibility to infections? Immunobiology. 220 (6), 711–713.
Article CAS PubMed Google Scholar
Prohászka Z., Munthe-Fog L., Ueland T., Gombos T., Yndestad A., Förhécz Z., Skjoedt MO, Pozsonyi Z., Gustavsen A., Jánoskuti L., Karádi I., Gullestad L., Dahl C.P., Askevold E.T., Füst G., Aukrust P., Mollnes T.E., Garred P. 2013. Association of ficolin-3 with severity and outcome of chronic heart failure. PLoS One. 8 (4), e60976.
Article PubMed PubMed Central Google Scholar
Li D., Lin H., Li L. 2020. Multiple feature selection strategies identified novel cardiac gene expression signature for heart failure. Front. Physiol. 11, 604241.
Article PubMed PubMed Central Google Scholar
Song H., Chen S., Zhang T., Huang X., Zhang Q., Li C., Chen C., Chen S., Liu D., Wang J., Tu Y., Wu Y., Liu Y. 2022. Integrated strategies of diverse feature selection methods identify aging-based reliable gene signatures for ischemic cardiomyopathy. Front. Mol. Biosci. 9, 805235.
Article CAS PubMed PubMed Central Google Scholar
Wie J., Kim B.J., Myeong J., Ha K., Jeong S.J., Yang D., Kim E., Jeon J.H., So I. 2015. The roles of Rasd1 small G proteins and leptin in the activation of TRPC4 transient receptor potential channels. Channels. 9 (4), 186–195.
Article PubMed PubMed Central Google Scholar
Kemppainen R.J., Behrend E.N. 1998. Dexamethasone rapidly induces a novel Ras superfamily member-related gene in AtT-20 cells. J. Biol. Chem. 273 (6), 3129–3131.
Article CAS PubMed Google Scholar
McGrath M.F., Ogawa T., De Bold A.J. 2012. Ras dexamethasone-induced protein 1 is a modulator of hormone secretion in the volume overloaded heart. Am. J. Physiol. Heart Circ. Physiol. 302 (9), H1826–H1837.
Article CAS PubMed Google Scholar
Baker C., Belbin O., Kalsheker N., Morgan K. 2007. SERPINA3 (aka alpha-1-antichymotrypsin). Front. Biosci. 12 (8–12), 2821–2835.
Article CAS PubMed Google Scholar
de Mezer M., Rogaliński J., Przewoźny S., Chojni-cki M., Niepolski L., Sobieska M., Przystańska A. 2023. SERPINA3: Stimulator or inhibitor of pathological changes. Biomedicines. 11 (1), 156.
Article CAS PubMed PubMed Central Google Scholar
You H., Dong M. 2023. Prediction of diagnostic gene biomarkers for hypertrophic cardiomyopathy by integrated machine learning. J. Int. Med. Res. 51 (11), 03000605231213781.
Comments (0)