Marine Fungi: In Search of New Antibacterial Drugs

Butler M.S., Henderson I.R., Capon R.J., Blaskovich M.A.T. 2023. Antibiotics in the clinical pipeline as of December 2022. J. Antibiot. 76, 431‒473.

Article  CAS  Google Scholar 

Bentley R. 2000. Mycophenolic acid:  A one hundred year odyssey from antibiotic to immunosuppressant. Chem. Rev. 100, 3801‒3826.

Article  CAS  PubMed  Google Scholar 

Karwehl S., Stadler M. 2016. Exploitation of fungal biodiversity for discovery of novel antibiotics. Curr. Top. Microbiol. Immunol. 398, 303‒338.

CAS  PubMed  Google Scholar 

Hutchings M.I., Truman A.W., Wilkinson B. 2019. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 51, 72‒80.

Article  CAS  PubMed  Google Scholar 

Gogineni V., Chen X., Hanna G., Mayasari D., Hamann M.T. 2020. Role of symbiosis in the discovery of novel antibiotics. J. Antibiot. 73, 490‒503.

Article  CAS  Google Scholar 

Nikolaou E., Agrafioti I., Stumpf M., Quinn J., Stansfield I., Brown A.J.P. 2009. Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol. Biol. 9, 44.

Article  PubMed  PubMed Central  Google Scholar 

van Santen J.A., Poynton E.F., Iskakova D., McMann E., Alsup T.A., Clark T.N., Fergusson C.H., Fewer D.P., Hughes A.H., McCadden C.A. 2022. The Natural Products Atlas 2.0: A database of microbially-derived natural products. Nucleic Acids Res. 50, D1317‒D1323.

Article  CAS  PubMed  Google Scholar 

Voser T.M., Campbell M.D., Carroll A.R. 2022. How different are marine microbial natural products compared to their terrestrial counterparts? Nat. Prod. Rep. 39, 7‒19.

Article  CAS  PubMed  Google Scholar 

Pang K.-L., Overy D.P., Jones E.B.G., Calado M.d.L., Burgaud G., Walker A.K., Johnson J.A., Kerr R.G., Cha H.-J., Bills G.F. 2016. “Marine fungi” and “marine-derived fungi” in natural product chemistry research: Toward a new consensual definition. Fungal Biol. Rev. 30, 163‒175.

Article  Google Scholar 

Carroll A.R., Copp B.R., Davis R.A., Keyzers R.A., Prinsep M.R. 2021. Marine natural products. Nat. Prod. Rep. 38, 362‒413.

Article  CAS  PubMed  Google Scholar 

Riera-Romo M., Wilson-Savón L., Hernandez-Balmaseda I. 2020. Metabolites from marine microorganisms in cancer, immunity, and inflammation: A critical review. J. Pharm. Pharmacogn. Res. 8, 368‒391.

Article  CAS  Google Scholar 

Wali A.F., Majid S., Rasool S., Shehada S.B., Abdulkareem S.K., Firdous A., Beigh S., Shakeel S., Mushtaq S., Akbar I., Madhkali H., Rehman M.U. 2019. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm. J. 27, 767‒777.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C., Tang S., Cao S. 2020. Antimicrobial compounds from marine fungi. Phytochem. Rev. 20, 85‒117.

Article  Google Scholar 

Rateb M.E., Ebel R. 2011. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 28, 290‒344.

Article  CAS  PubMed  Google Scholar 

Chen G., Wang H.F., Pei Y.H. 2014. Secondary metabolites from marine-derived microorganisms. J. Asian Nat. Prod. Res. 16, 105‒122.

Article  CAS  PubMed  Google Scholar 

Blunt J.W., Copp B.R., Keyzers R.A., Munro M.H.G., Prinsep M.R. 2015. Marine natural products. Nat. Prod. Rep. 32, 116‒211.

Article  CAS  PubMed  Google Scholar 

Liming J., Chunshan Q., Xiyan H., Shengdi F. 2016. Potential pharmacological resources: Natural bioactive compounds from marine-derived fungi. Mar. Drugs. 14, 76.

Article  Google Scholar 

Yurchenko A.N., Girich E.V., Yurchenko E.A. 2021. Metabolites of marine sediment-derived fungi: Actual trends of biological activity studies. Mar. Drugs. 19, 88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C., Tang S., Cao S. 2021. Antimicrobial compounds from marine fungi. Phytochem. Rev. 20, 85‒117.

Article  CAS  Google Scholar 

Hafez Ghoran S., Taktaz F., Sousa E., Fernandes C., Kijjoa A. 2023. Peptides from marine-derived fungi: Chemistry and biological activities. Mar. Drugs. 21, 510.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H., Zou J., Yan X., Chen J., Cao X., Wu J., Liu Y., Wang T. 2021. Marine-derived macrolides 1990–2020: An overview of chemical and biological diversity. Mar. Drugs. 19, 180.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karpiński T.M. 2019. Marine macrolides with antibacterial and/or antifungal activity. Mar. Drugs. 17, 241.

Article  PubMed  PubMed Central  Google Scholar 

Willems T., De Mol M.L., De Bruycker A., De Maeseneire S.L., Soetaert W.K. 2020. Alkaloids from marine fungi: Promising antimicrobials. Antibiotics. 9, 340.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomes N.G.M., Madureira-Carvalho Á., Dias-da-Silva D., Valentão P., Andrade P.B. 2021. Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomed. Pharmacother. 140, 111756.

Article  CAS  PubMed  Google Scholar 

Khalimova A.A. 2023. Review of the antibiotics market and evaluation of its development prospects. Med. Pharm. J. Pulse. 25, 77‒83.

Google Scholar 

Schekotikhin A.E., Olsufьeva E.N., Yankovskaya V.S. 2022. Antibiotiki i rodstvennye soedineniya. (Antibiotics and Related Compounds). Moscow: Laboratoriya Znanii.

Kohanski M.A., Dwyer D.J., Collins J.J. 2010. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 8, 423‒435.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fisher J.F., Mobashery S. 2023. beta-Lactams from the Ocean. Mar. Drugs. 21, 86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim C.-F., Lee S.K., Price J., Jack R.W., Turner G., Kong R.Y. 2003. Cloning and expression analysis of the pcbAB-pcbC β-lactam genes in the marine fungus Kallichroma tethys. Appl. Environ. Microbiol. 69, 1308‒1314.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Firakova S., Proksa B., Šturdíková M. 2007. Biosynthesis and biological activity of enniatins. Pharmazie. 62, 563‒568.

CAS  PubMed  Google Scholar 

Sy-Cordero A.A., Pearce C.J., Oberlies N.H. 2012. Revisiting the enniatins: a review of their isolation, biosynthesis, structure determination and biological activities. J. Antibiot. 65, 541‒549.

Article  CAS  Google Scholar 

Sasaki H., Kurakado S., Matsumoto Y., Yoshino Y., Sugita T., Koyama K., Kinoshita K. 2023. Enniatins from a marine-derived fungus Fusarium sp. inhibit biofilm formation by the pathogenic fungus Candida albicans. J. Nat. Med. 77, 455‒463.

Article  CAS  PubMed  Google Scholar 

Zhao P., Xue Y., Li X., Li J., Zhao Z., Quan C., Gao W., Zu X., Bai X., Feng S. 2019. Fungi-derived lipopeptide antibiotics developed since 2000. Peptides. 113, 52‒65.

Article  CAS  PubMed  Google Scholar 

Du F.-Y., Zhang P., Li X.-M., Li C.-S., Cui C.-M., Wang B.-G. 2014. Cyclohexadepsipeptides of the isaridin class from the marine-derived fungus Beauveria felina EN-135. J. Nat. Prod. 77, 1164‒1169.

Comments (0)

No login
gif