Fertile Ground for Mathematical Modeling: Therapeutic and Diagnostic Nanoparticle Transport in the Glomerulus

Chade AR, Bidwell GL 3rd. Novel drug delivery technologies and targets for renal disease. Hypertension. 2022;79(9):1937–48.

Article  CAS  PubMed  Google Scholar 

Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater. 2018;3(10):358–74.

Article  Google Scholar 

Ma Y, et al. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Bioactive Mater. 2020;5(3):732–43.

Article  Google Scholar 

Shang S, et al. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioactive Mater. 2024;37:206–21.

Article  CAS  Google Scholar 

Tietjen GT, et al. Focus on fundamentals: achieving effective nanoparticle targeting. Trends Mol Med. 2018;24(7):598–606.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang A, et al. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci. 2020;284:102261.

Article  CAS  PubMed  Google Scholar 

Farmer TG Jr, Edgar TF, Peppas NA. In vivo simulations of the intravenous dynamics of submicrometer particles of pH-responsive cationic hydrogels in diabetic patients. Indust Eng Chem Res. 2008;47(24):10053–63.

Article  CAS  Google Scholar 

Richfield O, et al. Rational nanoparticle design: optimization using insights from experiments and mathematical models. J Control Release. 2023;360:772–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korsmeyer RW, Von Meerwall E, Peppas NA. Solute and penetrant diffusion in swellable polymers. II. Verification of theoretical models. J Polym Sci Part B: Polym Phys. 1986;24(2):409–34.

Article  CAS  Google Scholar 

Peppas NA, Narasimhan B. Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release. 2014;190:75–81.

Article  CAS  PubMed  Google Scholar 

Richbourg N, Wechsler ME, Rodriguez-Cruz JJ, et al. Model-based modular hydrogel design. Nat Rev Bioeng 2024;2:575–87.

Feng D, DuMontier C, Pollak MR. Mechanical challenges and cytoskeletal impairments in focal segmental glomerulosclerosis. Am J Physiol Renal Physiol. 2018;314(5):F921–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pollak MR, et al. The glomerulus: the sphere of influence. Clin J Am Soc Nephrol. 2014;9(8):1461–9.

Article  PubMed  PubMed Central  Google Scholar 

Deen W, Robertson CR, Brenner BM. A model of glomerular ultrafiltration in the rat. Am J Physiol-Legacy Content. 1972;223(5):1178–83.

Article  CAS  Google Scholar 

Deen WM, Bohrer MP, Brenner BM. Macromolecule transport across glomerular capillaries: application of pore theory. Kidney Int. 1979;16(3):353–65.

Article  CAS  PubMed  Google Scholar 

Deen WM, Satvat B, Jamieson JM. Theoretical model for glomerular filtration of charged solutes. Am J Physiol-Renal Physiol. 1980;238(2):F126–39.

Article  CAS  Google Scholar 

Remuzzi A, et al. Three-dimensional reconstructed glomerular capillary network: blood flow distribution and local filtration. Am J Physioly-Renal Physiol. 1992;263(3):F562–72.

Article  CAS  Google Scholar 

Remuzzi A, Deen WM. Theoretical effects of a distribution of capillary dimensions on glomerular ultrafiltration. Microvasc Res. 1986;32(1):131–44.

Article  CAS  PubMed  Google Scholar 

Remuzzi A, Deen WM. Theoretical effects of network structure on glomerular filtration of macromolecules. Am J Physiol-Renal Physiol. 1989;257(1):F152–8.

Article  CAS  Google Scholar 

Drumond MC, Deen WM. Hindered transport of macromolecules through a single row of cylinders: application to glomerular filtration. J Biomech Eng. 1995;117(4):414–22.

Article  CAS  PubMed  Google Scholar 

Edwards A, Daniels BS, Deen WM. Ultrastructural model for size selectivity in glomerular filtration. Am J Physiol-Renal Physiol. 1999;276(6):F892–902.

Article  CAS  Google Scholar 

Richfield O, Cortez R, Navar LG. Simulations of glomerular shear and hoop stresses in diabetes, hypertension, and reduced renal mass using a network model of a rat glomerulus. Physiol Rep. 2020;8(18):e14577.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richfield O, Cortez R, Navar LG. Modeling the interaction between tubuloglomerular feedback and myogenic mechanisms in the control of glomerular mechanics. Front Physiol. 2024;15:1410764.

Article  PubMed  PubMed Central  Google Scholar 

Richfield O, Cortez R, Navar LG. Simulations of increased glomerular capillary wall strain in the 5/6-nephrectomized rat. Microcirculation. 2021;28(7):e12721.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du B, et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat Nanotechnol. 2017;12(11):1096–102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang S, et al. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density. Angew Chem Int Ed Engl. 2016;55(52):16039–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang Y, Yu M, Zheng J. Charge barriers in the kidney elimination of engineered nanoparticles. Proc Natl Acad Sci. 2024;121(23):e2403131121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Albert C, et al. Monobody adapter for functional antibody display on nanoparticles for adaptable targeted delivery applications. Nat Commun. 2022;13(1):5998.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiRito JR, et al. Lysis of cold-storage-induced microvascular obstructions for ex vivo revitalization of marginal human kidneys. Am J Transplant. 2021;21(1):161–73.

Article  CAS  PubMed  Google Scholar 

Tietjen GT, et al. Nanoparticle targeting to the endothelium during normothermic machine perfusion of human kidneys. Sci Trans Med. 2017;9(418):eaam6764.

Article  Google Scholar 

Feher J. 7.6—Regulation of fluid and electrolyte balance. In: Feher J, editor. Quantitative human physiology. Boston: Academic Press; 2012. pp. 665–673.

Navar LG, Maddox DA, Munger KA. Chapter 3: the renal circulations and glomerular filtration. In: Yu ASL, editor. Brenner and Rector’s the kidney. 11th ed. 2020. pp 80–114.

Antiga L, et al. Automatic generation of glomerular capillary topological organization. Microvasc Res. 2001;62(3):346–54.

Article  CAS  PubMed  Google Scholar 

Shea SM. Glomerular hemodynamics and vascular structure: the pattern and dimensions of a single rat glomerular capillary network reconstructed from ultrathin sections. Microvasc Res. 1979;18(2):129–43.

Article  CAS  PubMed  Google Scholar 

Shea SM, Raskova J. Glomerular hemodynamics and vascular structure in uremia: a network analysis of glomerular path lengths and maximal blood transit times computed for a microvascular model reconstructed from subserial ultrathin sections. Microvasc Res. 1984;28(1):37–50.

Article  CAS  PubMed 

Comments (0)

No login
gif