Influence of Reinforcement Material on Fatigue Features of Trans-Tibial Prosthetic with Epoxy Matrix

World Health Organization. It is standards for prosthetics and orthotics. Geneva, Switzerland: WHO; 2017.

Google Scholar 

Hughes J. Biomechanics of the through-knee prosthesis. Prosthet Orthot Int. 1983;7(2):96–9.

Article  CAS  PubMed  Google Scholar 

Pinzur MS, Gold J, Schwartz D, Gross N. Energy demands walking in dysvascular amputees as related to the level of amputation. Orthopedics. 1992;15(9):1033–7.

Article  CAS  PubMed  Google Scholar 

Penn-barwell JG. Outcomes in lower limb amputation following trauma: a systematic review and meta-analysis. Injury. 2011;42(12):1474–9.

Article  PubMed  Google Scholar 

Panhelleux B, Shalhoub J, Silverman AK, McGregor AH. A review of through-knee amputation. Vascular. 2022;30(6):1149–59.

Article  PubMed  Google Scholar 

Hamad QA, Al-Hasani FJ, Faheed NK. Comparative study of biotin and hydroxyapatite on biological properties of the composite coating. Int J Biomater. 2022;2022(1):8802111.

PubMed  PubMed Central  Google Scholar 

Al-Kaisy HA, Issa R, Faheed NK. Enhancing the biocompatibility of titanium implants with chitosan-alginate bio-composite coatings reinforced with HAP and ZnO. Rev Compos Mater Av. 2024;34(2):125–32.

Google Scholar 

Faheed NK, Hamad QA, Oleiwi JK. Tensile and stress analysis of hybrid composite prosthetic socket reinforced with natural fibers. J Renew Mater. 2022;10(7):1989–2013.

Article  Google Scholar 

Faheed NK, Hamad QA, Oleiwi JK. Enhancement of the flexural and impact properties of laminated biocomposite by new natural fibers for artificial lower limb socket. Adv Mater Process Technol. 2022;8(4):4347–64.

Google Scholar 

Santulli C. Mechanical and impact damage analysis on carbon/natural fibers hybrid composites: a review. Materials. 2019;12(3):517.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faheed NK, Hamad QA, Issa RAH. Investigation of the effect of thermal, mechanical, and morphological properties of bio-composites prosthetic socket. Compos Interfaces. 2023;31(3):331–55.

Article  Google Scholar 

Al-Hasani FJ, Hamad QA, Faheed NK. Enhancing the alginate-based composite layer’s cell viability and antibacterial properties by adding active particulates. Discov Appl Sci. 2024;6(2):70.

Article  Google Scholar 

Faheed NK. Advantages of natural fiber composites for biomedical applications: a review of recent advances. Emergent Matt. 2024;7:63–75. https://doi.org/10.1007/s42247-023-00620-x.

Article  CAS  Google Scholar 

Hamad QA, Oleiwi JK, Abdulrahman SA. Tensile properties of laminated composite prosthetic socket reinforced by different fibers. Mater Today Proc. 2021;80:2353–9.

Article  Google Scholar 

Campbell AI, Sexton S, Schaschke CJ, Kinsman H, McLaughlin B, Boyle M. Prosthetic limb sockets from plant-based composite materials. Prosthet Orthot Int. 2012;36:181–9.

Article  PubMed  Google Scholar 

Faheed Noor K, Oleiwib Jawad K, Hamad Qahtan A. Effect of different fiber reinforcements on some properties of prosthetic socket. Eng Technol J. 2021;39(11):1715–26.

Article  Google Scholar 

Al-Khazraji K, Kadhim J, Ahmed PS. Tensile and fatigue characteristics of lower-limb prosthetic socket made from composite materials. In: Proceedings of the 2012 international conference on industrial engineering and operations management Istanbul. Turkey; 2012. pp. 847–852.

Sattar MA, Ghazwan A, Abbas SM. Study and analysis of the mechanical properties and pressure socket for through-knee amputation. Int J Adv Technol Eng Explor. 2023;10(105):1063.

Google Scholar 

Oleiwi JK, Hamad QA, Faheed NK. Experimental, theoretical, and numerical analysis of laminated composite prosthetic socket reinforced with flax and cotton fibers. Biotribology. 2023;1(35):100244.

Article  Google Scholar 

Khatun MF, Sultana S, ParvinNur H, et al. Physical, mechanical, thermal, and morphological analysis of date palm mat (DPM) and palmyra palm fruit (PPF) fiber-reinforced high-density polyethylene hybrid composites. Adv Mater Sci. 2019;4(2):1–6.

Article  Google Scholar 

Appadurai M, Jenish I, Sahayaraj AF, Irudaya Raj EF, Suresh P. Sea sand abrasive wear of red mud micro-particle reinforced Cissus quadrangularis stem fiber/epoxy composite. J Nat Fibers. 2022;19(16):1–16.

Google Scholar 

Standard test method for tensile properties of plastics D638–03. Annual Book of ASTM Standards. New York; 2004. pp. 1–17. http://www.ansi.org.

Standard test method for fatigue testing of plastics ASTM E606-98. Annual Book of ASTM Standards. New York; 1998. pp. 1–15. https://www.ansi.org.

Resan KK, Zeki A. Design and analysis of knee ankle foot orthosis (KAFO) for a paraplegic person. Eng Technol J. 2013;31(8):1521–33.

Article  Google Scholar 

Kadhim FM, Takhakh AM, Chiad JS. Vibration Measurement and analysis of knee, ankle foot orthosis for metal and plastic KAFO type. ASME Int Mech Eng Congress Expos. 2013;56222:1–11.

Google Scholar 

Ansys-11 Workbench help guide, SAS IP, Inc., Eleventh Edition; 2008. pp. 1–286. http://www.ansys.com.

www.maelabs.ucsd.edu/.../Materials/.../solutions/MESPD-Solution-manual. pdf. “Materials: engineering, science, properties, and design solution manual”, (2010).

Clifford MM. Case studies in engineering design. John Wily Publishing Ltd.; 1998. pp. 1–272. https://www.amazon.com/Studies-Engineering-Design-Cliff-Matthews/dp/0340691352.

www.webs1.uidaho.edu/Fatigue Analysis of Combined Loading Mode. 2010.

Mustafa TI, Muhsin JJ, Resan KK. Study of creep-fatigue interaction in the prosthetic socket below knee. Innov Syst Des Eng. 2013;4(5):383–94.

Google Scholar 

Ju Q, S. Ion S. A failure criterion revision method for composite materials. Polym Polym Compos. 2021;29(7):854–62.

Google Scholar 

Kim JK, Kim HS, Lee DG. Investigation of optimal surface treatments for carbon/epoxy composite adhesive joints. J Adhes Sci Technol. 2003;17(3):329–52.

Article  CAS  Google Scholar 

Kadhim FM, Chiad JS, Takhakh AM. Design and manufacturing knee joint for smart transfemoral prosthetic. IOP Conf Ser: Mater Sci Eng. 2018;454(1):012078.

Article  Google Scholar 

Ismail MR, Al-Waily M, Kadhim AA. Biomechanical analysis and gait assessment for normal and braced legs. Int J Mech Mechatron Eng. 2018;18(03):1–9.

Abbas BR, Hebeatir KA, Resan KK. Effect of CO2 laser on some properties of NI46TI50CU4 shape memory alloy. Int J Mech Prod Eng Res Dev. 2018;08(02):451–60.

Google Scholar 

Jones RM. Mechanics of composite material". New York: McGraw-Hill; 1975.

Book  Google Scholar 

Groover MP. Fundamentals of modern manufacturing materials, processes, and systems. 4th ed. John Wiley & Sons, Inc.; 2019. pp. 1–1024. https://www.amazon.com/Fundamentals-Modern-Manufacturing-Materials-Processes/dp/0470467002.

Elie SM. Study of mechanical properties and thermal conductivity for polymer composite material reinforced by aluminum and aluminum oxide particles. M.Sc: Thesis, University of Technology, Baghdad, Iraq; 2007.

Google Scholar 

NoorunnisaKhanam P, Abdul Khalil HPS, Jawaid M, Ramachandra Reddy G, Surya Narayana C, Venkata Naidu S. Sisal/carbon fibre reinforced hybrid composites: tensile, flexural and chemical resistance properties. J Polym Environ. 2010;18:727–33.

Article  CAS  Google Scholar 

Jweeg M. Dynamic analysis of stiffened and unstiffened composite plates. Iraqi J Mech Mater Eng. 2013;13(4):689–713.

Google Scholar 

Njim EK, Al-Waily M,  Bakhy SH. A review of the recent research on the experimental tests of functionally graded sandwich panels. J Mech Eng Res Dev. 2021;44(3):420–441.

Shahzad A. Investigation into fatigue strength of natural/synthetic fiber-based composite materials. Woodhead Publishing Series in Composites Science and Engineering; 2019. pp. 215–239. https://doi.org/10.1016/B978-0-08-102292-4.00012-6.

Al-Shroofy MN, Hamad QA, Faheed NK, Al-Kaisy H. Evaluation of novel chitosan-based composites coating on wettability for pure titanium implants. J Renew Mater. 2023;11(4):1601–12. https://doi.org/10.32604/jrm.2023.023213.

Article  CAS  Google Scholar 

Hamad QA, Faheed NK, Issa RAH. Wettability, morphological, miscibility characterization of alginate, and chitosan-based biocomposite coatings. Surface Eng. 2024;40(5):629–47.

Article  Google Scholar 

Bhowmik S, Kumar S, Mahakur VK. Various factors affecting the fatigue performance of natural fiber-reinforced polymer composites: a systematic review. Iran Polym J. 2024;33(2):249–71.

Article  CAS  Google Scholar 

Shahzad A. Impact and fatigue properties of natural fiber composites. Ph.D. Thesis, Swansea University, United Kingdom of Great Britain; 2009. p. 399. https://cronfa.swan.ac.uk/Record/cronfa43056.

Miller BA. Failure analysis and prevention, fatigue failures. ASM Int Handbook. 2002;11:58.

Google Scholar 

Kohnke P. Ansys-11 Workbench help guide, SAS IP, Inc. 11th ed; 2008. pp. 1–268. http://www.ansys.com.

Nachippan NM, Alphonse M, Raja VB, Palanikumar K, Kiran RSU, Krishna VG. Numerical analysis of natural fiber reinforced composite bumper. Mater Today: Proc. 2021;46:3817–23.

Google Scholar 

Oleiwi JK, Alwan MK, Hamad QA. Numerically and experimentally studying of some mechanical properties of the polyester matrix composite material reinforced by jute fibers. Eng Tech J. 2014;32(9):2235–2247. https://doi.org/10.30684/etj.32.9A11.

Islam MZ. Fatigue behavior of flax fiber reinforced polymer matrix composites. MSC Thesis, North Dakota State University, USA; 2019. pp. 1–59. https://library.ndsu.edu/ir/items/6a2b027c-6f21-4085-8677-6bfc6aa896f2.

Bolten W. Engineering materials technology. Third edition, Butterworth & Heinemann publishing Ltd.; 1998. pp. 1–480. https://www.amazon.com/Engineering-Materials-Technology-Third-Bolton/dp/0750639172.

Hamad QA, Rahman HJA, Faheed NK. Improving some mechanical properties of green biocomposite by natural pumpkin powders for prosthetic socket. In AIP Conf Proc. 2023;2787(1):020024–10. https://doi.org/10.1063/5.0149834.

www.webs1.uidaho.edu/“Fatigue analysis of combined loading mode”, 2010.

Koch I, Zscheyge M, Tittmann K, Gude M. Numerical fatigue analysis of CFRP components. Compos Struct. 2017;168:392–401.

Article  Google Scholar 

Ibraheem B, Salman SF, Ali AH. Numerical analysis of fatigue life and strength of AA5052 aluminum alloy reinforced with ZrO2, TiO2 and Al2O3 nanoparticles. Diyala J Eng Sci. 2022;15(2):83–93.

Article  Google Scholar 

AL-Bedhany J, Legutko S, AL-Maliki A, Mankhi AT. A new theory of damage estimation and fatigue life prediction. Misan J Eng Sci. 2023;2(2):1–11. https://doi.org/10.61263/mjes.v2i2.26.

Comments (0)

No login
gif