Allaq AA, Kashan JS, Mahmood AI, Abdul-Kareem FM. Development and characterization of poly (methyl methacrylate)/hydroxyapatite bio-composites treated with antimicrobial agent as a bone analogue material. Mater Technol. 2025;59(2):315–23.
Xu C, Liu Z, Chen X, Gao Y, Wang W, Zhuang X, Dong X. Bone tissue engineering scaffold materials: fundamentals, advances, and challenges. Chin Chem Lett. 2024;35(2):109197.
Al-allaq AA, Kashan JS, Abdul-Kareem FM, Alani AM. Review of in vivo investigations on metal implants for bone tissue engineering. Regenerative Eng Transl Med. 2024: 1–25.
Ferraz MP. An overview on the big players in bone tissue engineering: biomaterials, scaffolds and cells. Int J Mol Sci. 2024;25(7):3836.
Article CAS PubMed PubMed Central Google Scholar
Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252–62.
Article CAS PubMed PubMed Central Google Scholar
Chocholata P, Kulda V, Babuska V. Review: Fabrication of scaffolds for bone-tissue regeneration. Materials (MDPI). 2019;12(4):1–25.
Wie S, Ma JX, Xu L, Gu XS, Ma XL. Biodegradable materials for bone defect repair. Mil Med Res. 2020;7:1–25.
Al-allaq A, Kashan JS, Abdul-Kareem FM. In vivo investigations of polymers in bone tissue engineering: a review study. Intl J Polym Mater Polymeric Biomater. 2024: 1–16.
Pei B, Wang W, Dunne N, Li X. Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements, and prospects. Nanomaterials. 2019;9(10):1501.
Article CAS PubMed PubMed Central Google Scholar
Kashan JS, Al-Allaq AA, Fouad H, Yahia ME. Effect of multi-walled carbon nanotube on the microstructure, physical and mechanical properties of ZrO2–CaO/Poly (methyl methacrylate) biocomposite for bone reconstruction application. Sci Adv Mater. 2023;15(3):405–11.
Narváez-Romero AM, Rodríguez-Lozano FJ, Pecci-Lloret MP. Graphene-based materials for bone regeneration in dentistry: a systematic review of in vitro applications and material comparisons. Nanomaterials. 2025;15(2):88.
Article PubMed PubMed Central Google Scholar
López-García S, Aznar-Cervantes SD, Pagán A, Llena C, Forner L, Sanz JL ... Onate-Sánchez RE. 3D graphene/silk fibroin scaffolds enhance dental pulp stem cell osteo/odontogenic differentiation. Dental Mater. 2024;40(3), 431–440.
Akgul Y, Ahlatci H, Turan ME, Simsir H, Erden MA, Sun Y, Kilic A. Mechanical, tribological, and biological properties of carbon fiber/hydroxyapatite reinforced hybrid composites. Polym Compos. 2020;41(6):2426–32.
Al-Allaq AA, Kashan JS, El-Wakad MT, Soliman AM. Evaluation of a hybrid biocomposite of HA/HDPE reinforced with multi-walled carbon nanotubes (MWCNTs) as a bone-substitute material. Mater Technol. 2021;55(5):673–80.
Singh MK, Shokuhfar T, Gracio JJDA, de Sousa ACM, Fereira JMDF, Garmestani H, Ahzi S. Hydroxyapatite modified with carbon-nanotube-reinforced poly (methyl methacrylate): a nanocomposite material for biomedical applications. Adv Func Mater. 2008;18(5):694–700.
Al-allaq AA, Kashan JS, El-Wakad MT, Soliman AM. Multiwall carbon nanotube reinforced HA/HDPE biocomposite for bone reconstruction. Periodic Eng Natural Sci (PEN). 2021;9(2):930–9.
Al-Allaq ALIA, Kashan JS, El-Wakad MT, Soliman AM. HA/HDPE reinforced with MWCNTs for bone reconstruction and replacement application. Materiale Plastice. 2022;59(1).
Fragogeorgi EA, Rouchota M, Georgiou M, Velez M, Bouziotis P, Loudos G. In vivo imaging techniques for bone tissue engineering. J Tissue Eng. 2019;10:2041731419854586.
Article PubMed PubMed Central Google Scholar
Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials. 2013;34(28):6615–30.
Article CAS PubMed PubMed Central Google Scholar
Zuncheddu D, Della Bella E, Schwab A, Petta D, Rocchitta G, Generelli S, Basoli V. Quality control methods in musculoskeletal tissue engineering: from imaging to biosensors. Bone Res. 2021;9(1):46.
Article CAS PubMed PubMed Central Google Scholar
Rentsch C, Schneiders W, Manthey S, Rentsch B, Rammelt S. Comprehensive histological evaluation of bone implants. Biomatter. 2014;4(1):e27993.
Article PubMed PubMed Central Google Scholar
Ju J, Peng X, Huang K, Li L, Liu X, Chitrakar C, Kuang T. High-performance porous PLLA-based scaffolds for bone tissue engineering: preparation, characterization, and in vitro and in vivo evaluation. Polymer. 2019;180:121707.
Lai WY, Feng SW, Chan YH, Chang WJ, Wang HT, Huang HM. In vivo investigation into effectiveness of Fe3O4/PLLA nanofibers for bone tissue engineering applications. Polymers. 2018;10(7):804.
Article PubMed PubMed Central Google Scholar
Mahmood SK, Razak ISA, Ghaji MS, Yusof LM, Mahmood ZK, Rameli MABP, Zakaria ZAB. In vivo evaluation of a novel nanocomposite porous 3D scaffold in a rabbit model: histological analysis. Intl J Nanomed. 2017; 8587–8598.
Jing Z, Wu Y, Su W, Tian M, Jiang W, Cao L, Zhao Z. Carbon nanotube reinforced collagen/hydroxyapatite scaffolds improve bone tissue formation in vitro and in vivo. Ann Biomed Eng. 2017;45:2075–87.
Comments (0)