Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA A Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.
Kleeff J, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2(1):16022. https://doi.org/10.1038/nrdp.2016.22.
Schima W, Ba-Ssalamah A, Goetzinger P, Scharitzer M, Koelblinger C. State-of-the-art magnetic resonance imaging of pancreatic cancer. Top Magn Reson Imaging. 2007;18(6):421–9. https://doi.org/10.1097/rmr.0b013e31816459e0.
Alabousi M, et al. MRI vs. CT for the detection of liver metastases in patients with pancreatic carcinoma: a comparative diagnostic test accuracy systematic review and meta-analysis. Magn Reson Imaging. 2021;53(1):38–48. https://doi.org/10.1002/jmri.27056.
Caravatta L, et al. Magnetic resonance imaging (MRI) compared with computed tomography (CT) for interobserver agreement of gross tumor volume delineation in pancreatic cancer: a multi-institutional contouring study on behalf of the AIRO group for gastrointestinal cancers. Acta Oncol. 2019;58(4):439–47. https://doi.org/10.1080/0284186X.2018.1546899.
Gilani N, Malcolm P, Johnson G. An improved model for prostate diffusion incorporating the results of Monte Carlo simulations of diffusion in the cellular compartment. NMR Biomed. 2017;30(12): e3782. https://doi.org/10.1002/nbm.3782.
Horvat JV, et al. Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer. Magn Reson Imaging. 2019;50(3):836–46. https://doi.org/10.1002/jmri.26697.
Kallehauge JF, et al. Apparent Diffusion Coefficient (ADC) as a quantitative parameter in diffusion weighted MR imaging in gynecologic cancer: dependence on b-values used. Acta Oncol. 2010;49(7):1017–22. https://doi.org/10.3109/0284186X.2010.500305.
Doskaliyev A, et al. Lymphomas and glioblastomas: Differences in the apparent diffusion coefficient evaluated with high b-value diffusion-weighted magnetic resonance imaging at 3 T. Eur J Radiol. 2012;81(2):339–44. https://doi.org/10.1016/j.ejrad.2010.11.005.
Gilani N, Malcolm P, Johnson G. A model describing diffusion in prostate cancer. Magn Reson Med. 2017;78(1):316–26. https://doi.org/10.1002/mrm.26340.
Article CAS PubMed Google Scholar
Gilani N, Johnson G. Bias in MRI measurements of apparent diffusion coefficient and kurtosis: implications for choice of maximum diffusion encoding. Appl Magn Reson. 2019;50(1–3):47–61. https://doi.org/10.1007/s00723-018-1047-5.
Gilani N, Malcolm PN, Johnson G. Parameter estimation error dependency on the acquisition protocol in diffusion kurtosis imaging. Appl Magn Reson. 2016;47(11):1229–38. https://doi.org/10.1007/s00723-016-0829-x.
Article PubMed PubMed Central Google Scholar
Ogura A, Hayakawa K, Miyati T, Maeda F. Imaging parameter effects in apparent diffusion coefficient determination of magnetic resonance imaging. Eur J Radiol. 2011;77(1):185–8. https://doi.org/10.1016/j.ejrad.2009.06.031.
Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization. Concepts Magn Reson. 2006;28A(2):155–79. https://doi.org/10.1002/cmr.a.20050.
Chenevert TL, Welsh RC. Diffusion tensor MR imaging. CP Magn Reson Imag. 2004. https://doi.org/10.1002/0471142719.mib0801s12.
Majumdar S, Zhu DC, Udpa SS, Raguin LG. A diffusion gradient optimization framework for spinal cord diffusion tensor imaging. Magn Reson Imag. 2011;29(6):789–804. https://doi.org/10.1016/j.mri.2011.02.025.
Gilani N, et al. Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney. Magn Reson Mater Phy. 2024;37(4):671–80. https://doi.org/10.1007/s10334-024-01159-6.
Dolciami M, et al. Intravoxel incoherent motion (IVIM) MR quantification in locally advanced cervical cancer (LACC): preliminary study on assessment of tumor aggressiveness and response to neoadjuvant chemotherapy. JPM. 2022;12(4):638. https://doi.org/10.3390/jpm12040638.
Article PubMed PubMed Central Google Scholar
Huang H, Liu B, Xu Y, Zhou W. Synthetic-to-real domain adaptation with deep learning for fitting the intravoxel incoherent motion model of diffusion-weighted imaging. Med Phys. 2023;50(3):1614–22. https://doi.org/10.1002/mp.16031.
Sigmund EE, et al. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology. 2012;263(3):758–69. https://doi.org/10.1148/radiol.12111327.
Barbieri S, Donati OF, Froehlich JM, Thoeny HC. Comparison of intravoxel incoherent motion parameters across MR imagers and field strengths: evaluation in upper abdominal organs. Radiology. 2016;279(3):784–94. https://doi.org/10.1148/radiol.2015151244.
Sigmund EE, et al. Cardiac phase and flow compensation effects on REnal flow and microstructure AnisotroPy MRI in healthy human kidney. Magn Reson Imaging. 2023;58(1):210–20. https://doi.org/10.1002/jmri.28517.
Granata V, et al. Early assessment of colorectal cancer patients with liver metastases treated with antiangiogenic drugs: the role of intravoxel incoherent motion in diffusion-weighted imaging. PLoS One. 2015;10(11): e0142876. https://doi.org/10.1371/journal.pone.0142876.
Article CAS PubMed PubMed Central Google Scholar
Li H, et al. Preoperative histogram analysis of intravoxel incoherent motion (IVIM) for predicting microvascular invasion in patients with single hepatocellular carcinoma. Eur J Radiol. 2018;105:65–71. https://doi.org/10.1016/j.ejrad.2018.05.032.
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23(7):698–710. https://doi.org/10.1002/nbm.1518.
Article PubMed PubMed Central Google Scholar
Cao L, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade. Quant Imaging Med Surg. 2019;9(4):590–602. https://doi.org/10.21037/qims.2019.02.14.
Article PubMed PubMed Central Google Scholar
Masutani Y, Aoki S. Fast and robust estimation of diffusional kurtosis imaging (DKI) parameters by general closed-form expressions and their extensions. MRMS. 2014;13(2):97–115. https://doi.org/10.2463/mrms.2013-0084.
Zong F, et al. Fast diffusion kurtosis mapping of human brain at 7 Tesla with hybrid principal component analyses. IEEE Access. 2021;9:107965–75. https://doi.org/10.1109/ACCESS.2021.3100546.
Ma X, Zhao X, Ouyang H, Sun F, Zhang H, Zhou C. Quantified ADC histogram analysis: a new method for differentiating mass-forming focal pancreatitis from pancreatic cancer. Acta Radiol. 2014;55(7):785–92. https://doi.org/10.1177/0284185113509264.
Lee SS, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. Magn Reson Imaging. 2008;28(4):928–36. https://doi.org/10.1002/jmri.21508.
Warda MHA, Hasan DI, Elteeh OA. differentiation of pancreatic lesions using diffusion-weighted MRI. Egypt J Radiol Nucl Med. 2015;46(3):563–8. https://doi.org/10.1016/j.ejrnm.2015.03.009.
Fattahi R, et al. Pancreatic diffusion-weighted imaging (DWI): Comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas. Magn Reson Imaging. 2009;29(2):350–6. https://doi.org/10.1002/jmri.21651.
Barral M, et al. Characterization of focal pancreatic lesions using normalized apparent diffusion coefficient at 1.5-Tesla: preliminary experience. Diagn Interv Imaging. 2013;94(6):619–27. https://doi.org/10.1016/j.diii.2013.02.011.
Comments (0)