Toward diffusion MRI in the diagnosis and treatment of pancreatic cancer

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA A Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

Article  Google Scholar 

Kleeff J, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2(1):16022. https://doi.org/10.1038/nrdp.2016.22.

Article  PubMed  Google Scholar 

Schima W, Ba-Ssalamah A, Goetzinger P, Scharitzer M, Koelblinger C. State-of-the-art magnetic resonance imaging of pancreatic cancer. Top Magn Reson Imaging. 2007;18(6):421–9. https://doi.org/10.1097/rmr.0b013e31816459e0.

Article  PubMed  Google Scholar 

Alabousi M, et al. MRI vs. CT for the detection of liver metastases in patients with pancreatic carcinoma: a comparative diagnostic test accuracy systematic review and meta-analysis. Magn Reson Imaging. 2021;53(1):38–48. https://doi.org/10.1002/jmri.27056.

Article  Google Scholar 

Caravatta L, et al. Magnetic resonance imaging (MRI) compared with computed tomography (CT) for interobserver agreement of gross tumor volume delineation in pancreatic cancer: a multi-institutional contouring study on behalf of the AIRO group for gastrointestinal cancers. Acta Oncol. 2019;58(4):439–47. https://doi.org/10.1080/0284186X.2018.1546899.

Article  PubMed  Google Scholar 

Gilani N, Malcolm P, Johnson G. An improved model for prostate diffusion incorporating the results of Monte Carlo simulations of diffusion in the cellular compartment. NMR Biomed. 2017;30(12): e3782. https://doi.org/10.1002/nbm.3782.

Article  CAS  Google Scholar 

Horvat JV, et al. Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer. Magn Reson Imaging. 2019;50(3):836–46. https://doi.org/10.1002/jmri.26697.

Article  Google Scholar 

Kallehauge JF, et al. Apparent Diffusion Coefficient (ADC) as a quantitative parameter in diffusion weighted MR imaging in gynecologic cancer: dependence on b-values used. Acta Oncol. 2010;49(7):1017–22. https://doi.org/10.3109/0284186X.2010.500305.

Article  PubMed  Google Scholar 

Doskaliyev A, et al. Lymphomas and glioblastomas: Differences in the apparent diffusion coefficient evaluated with high b-value diffusion-weighted magnetic resonance imaging at 3 T. Eur J Radiol. 2012;81(2):339–44. https://doi.org/10.1016/j.ejrad.2010.11.005.

Article  PubMed  Google Scholar 

Gilani N, Malcolm P, Johnson G. A model describing diffusion in prostate cancer. Magn Reson Med. 2017;78(1):316–26. https://doi.org/10.1002/mrm.26340.

Article  CAS  PubMed  Google Scholar 

Gilani N, Johnson G. Bias in MRI measurements of apparent diffusion coefficient and kurtosis: implications for choice of maximum diffusion encoding. Appl Magn Reson. 2019;50(1–3):47–61. https://doi.org/10.1007/s00723-018-1047-5.

Article  CAS  Google Scholar 

Gilani N, Malcolm PN, Johnson G. Parameter estimation error dependency on the acquisition protocol in diffusion kurtosis imaging. Appl Magn Reson. 2016;47(11):1229–38. https://doi.org/10.1007/s00723-016-0829-x.

Article  PubMed  PubMed Central  Google Scholar 

Ogura A, Hayakawa K, Miyati T, Maeda F. Imaging parameter effects in apparent diffusion coefficient determination of magnetic resonance imaging. Eur J Radiol. 2011;77(1):185–8. https://doi.org/10.1016/j.ejrad.2009.06.031.

Article  PubMed  Google Scholar 

Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization. Concepts Magn Reson. 2006;28A(2):155–79. https://doi.org/10.1002/cmr.a.20050.

Article  Google Scholar 

Chenevert TL, Welsh RC. Diffusion tensor MR imaging. CP Magn Reson Imag. 2004. https://doi.org/10.1002/0471142719.mib0801s12.

Article  Google Scholar 

Majumdar S, Zhu DC, Udpa SS, Raguin LG. A diffusion gradient optimization framework for spinal cord diffusion tensor imaging. Magn Reson Imag. 2011;29(6):789–804. https://doi.org/10.1016/j.mri.2011.02.025.

Article  Google Scholar 

Gilani N, et al. Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney. Magn Reson Mater Phy. 2024;37(4):671–80. https://doi.org/10.1007/s10334-024-01159-6.

Article  Google Scholar 

Dolciami M, et al. Intravoxel incoherent motion (IVIM) MR quantification in locally advanced cervical cancer (LACC): preliminary study on assessment of tumor aggressiveness and response to neoadjuvant chemotherapy. JPM. 2022;12(4):638. https://doi.org/10.3390/jpm12040638.

Article  PubMed  PubMed Central  Google Scholar 

Huang H, Liu B, Xu Y, Zhou W. Synthetic-to-real domain adaptation with deep learning for fitting the intravoxel incoherent motion model of diffusion-weighted imaging. Med Phys. 2023;50(3):1614–22. https://doi.org/10.1002/mp.16031.

Article  PubMed  Google Scholar 

Sigmund EE, et al. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology. 2012;263(3):758–69. https://doi.org/10.1148/radiol.12111327.

Article  PubMed  Google Scholar 

Barbieri S, Donati OF, Froehlich JM, Thoeny HC. Comparison of intravoxel incoherent motion parameters across MR imagers and field strengths: evaluation in upper abdominal organs. Radiology. 2016;279(3):784–94. https://doi.org/10.1148/radiol.2015151244.

Article  PubMed  Google Scholar 

Sigmund EE, et al. Cardiac phase and flow compensation effects on REnal flow and microstructure AnisotroPy MRI in healthy human kidney. Magn Reson Imaging. 2023;58(1):210–20. https://doi.org/10.1002/jmri.28517.

Article  Google Scholar 

Granata V, et al. Early assessment of colorectal cancer patients with liver metastases treated with antiangiogenic drugs: the role of intravoxel incoherent motion in diffusion-weighted imaging. PLoS One. 2015;10(11): e0142876. https://doi.org/10.1371/journal.pone.0142876.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, et al. Preoperative histogram analysis of intravoxel incoherent motion (IVIM) for predicting microvascular invasion in patients with single hepatocellular carcinoma. Eur J Radiol. 2018;105:65–71. https://doi.org/10.1016/j.ejrad.2018.05.032.

Article  PubMed  Google Scholar 

Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23(7):698–710. https://doi.org/10.1002/nbm.1518.

Article  PubMed  PubMed Central  Google Scholar 

Cao L, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade. Quant Imaging Med Surg. 2019;9(4):590–602. https://doi.org/10.21037/qims.2019.02.14.

Article  PubMed  PubMed Central  Google Scholar 

Masutani Y, Aoki S. Fast and robust estimation of diffusional kurtosis imaging (DKI) parameters by general closed-form expressions and their extensions. MRMS. 2014;13(2):97–115. https://doi.org/10.2463/mrms.2013-0084.

Article  PubMed  Google Scholar 

Zong F, et al. Fast diffusion kurtosis mapping of human brain at 7 Tesla with hybrid principal component analyses. IEEE Access. 2021;9:107965–75. https://doi.org/10.1109/ACCESS.2021.3100546.

Article  Google Scholar 

Ma X, Zhao X, Ouyang H, Sun F, Zhang H, Zhou C. Quantified ADC histogram analysis: a new method for differentiating mass-forming focal pancreatitis from pancreatic cancer. Acta Radiol. 2014;55(7):785–92. https://doi.org/10.1177/0284185113509264.

Article  PubMed  Google Scholar 

Lee SS, et al. Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. Magn Reson Imaging. 2008;28(4):928–36. https://doi.org/10.1002/jmri.21508.

Article  Google Scholar 

Warda MHA, Hasan DI, Elteeh OA. differentiation of pancreatic lesions using diffusion-weighted MRI. Egypt J Radiol Nucl Med. 2015;46(3):563–8. https://doi.org/10.1016/j.ejrnm.2015.03.009.

Article  Google Scholar 

Fattahi R, et al. Pancreatic diffusion-weighted imaging (DWI): Comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas. Magn Reson Imaging. 2009;29(2):350–6. https://doi.org/10.1002/jmri.21651.

Article  Google Scholar 

Barral M, et al. Characterization of focal pancreatic lesions using normalized apparent diffusion coefficient at 1.5-Tesla: preliminary experience. Diagn Interv Imaging. 2013;94(6):619–27. https://doi.org/10.1016/j.diii.2013.02.011.

Article  CAS  PubMed 

Comments (0)

No login
gif