Cx43 mediates cross-talk of tumor cells and macrophage via cGAS-STING signaling

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram land Jemal A, Global cancer statistics. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2022;2024(74):229–63. https://doi.org/10.3322/caac.21834.

Article  Google Scholar 

Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, Wistuba II, Rimm DL, Tsao MS, Hirsch FR. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18:345–62. https://doi.org/10.1038/s41571-021-00473-5.

Article  CAS  PubMed  Google Scholar 

Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther. 2022;7:331. https://doi.org/10.1038/s41392-022-01136-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang C, Zhang C, Wang H. Immune-checkpoint inhibitor resistance in cancer treatment: current progress and future directions. Cancer Lett. 2023;562:216182. https://doi.org/10.1016/j.canlet.2023.216182.

Article  CAS  PubMed  Google Scholar 

Wolchok JD, Chiarion-Sileni V, Rutkowski P, Cowey CL, Schadendorf D, Wagstaff J, Queirolo P, Dummer R, Butler MO, Hill AG, Postow MA, Gaudy-Marqueste C, Medina T, Lao CD, Walker J, Márquez-Rodas I, Haanen J, Guidoboni M, Maio M, Schöffski P, Carlino MS, Sandhu S, Lebbé C, Ascierto PA, Long GV, Ritchings C, Nassar A, Askelson M, Benito MP, Wang W, Hodi FS, Larkin J. Final, 10-year outcomes with nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2024. https://doi.org/10.1056/NEJMoa2407417.

Article  PubMed  PubMed Central  Google Scholar 

Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma. Lancet. 2021;398:1002–14. https://doi.org/10.1016/s0140-6736(21)01206-x.

Article  CAS  PubMed  Google Scholar 

Killock D. Frontline nivolumab combinations improve OS in ESCC. Nat Rev Clin Oncol. 2022;19:219. https://doi.org/10.1038/s41571-022-00608-2.

Article  CAS  PubMed  Google Scholar 

Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G, Zitvogel L. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255–69. https://doi.org/10.1016/j.immuni.2016.06.001.

Article  CAS  PubMed  Google Scholar 

Vesely MD, Chen ZT. Resistance mechanisms to anti-PD cancer immunotherapy. Annu Rev Immunol. 2022;40:45–74. https://doi.org/10.1146/annurev-immunol-070621-030155.

Article  CAS  PubMed  Google Scholar 

Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P, Gu X. 2023 Advances in immunotherapy for triple-negative breast cancer. Mol Cancer. 2023;22:145. https://doi.org/10.1186/s12943-023-01850-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue G, Wang Z, Zheng N, Fang J, Mao C, Li X, Jin G, Ming X, Lu Y. Elimination of acquired resistance to PD-1 blockade via the concurrent depletion of tumour cells and immunosuppressive cells. Nat Biomed Eng. 2021;5:1306–19. https://doi.org/10.1038/s41551-021-00799-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50. https://doi.org/10.1038/s41591-018-0014-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23:1148–56. https://doi.org/10.1038/s41590-022-01267-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6. https://doi.org/10.1016/j.cell.2006.01.007.

Article  CAS  PubMed  Google Scholar 

Li X, Liu R, Su X, Pan Y, Han X, Shao C, Shi Y. Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer. 2019;18:177. https://doi.org/10.1186/s12943-019-1102-3.

Article  PubMed  PubMed Central  Google Scholar 

Chen S, Saeed A, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8:207. https://doi.org/10.1038/s41392-023-01452-1.

Article  PubMed  PubMed Central  Google Scholar 

Lee C, Lee H, Cho H, Kim S, Choi I, Hwang YS, Jeong H, Jang H, Pak S, Hwang DS, Han IH, Bae H. Combination of anti-PD-L1 antibody with peptide MEL-dKLA targeting M2 tumor-associated macrophages suppresses breast cancer metastasis. Cancer Commun (Lond). 2022;42:345–9. https://doi.org/10.1002/cac2.12276.

Article  PubMed  Google Scholar 

Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12:76. https://doi.org/10.1186/s13045-019-0760-3.

Article  PubMed  PubMed Central  Google Scholar 

Dvorkin S, Cambier S. New frontiers in the cGAS-STING intracellular DNA-sensing pathway. Immunity. 2024;57:718–30. https://doi.org/10.1016/j.immuni.2024.02.019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flavell RA, Sefik E. Sensing DNA as danger: the discovery of cGAS. Immunity. 2024;57:2251–4. https://doi.org/10.1016/j.immuni.2024.09.009.

Article  CAS  PubMed  Google Scholar 

Wang H, Hu S, Chen X, Shi H, Chen C, Sun L, Chen ZJ. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci USA. 2017;114:1637–42. https://doi.org/10.1073/pnas.1621363114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Li Z, Huang H, Shen G, Ren Y, Mao X, Wang L, Li Z, Wang W, Li G, Zhao B, Guo W, Hu Y. Cancer immunotherapy based on cell membrane-coated nanocomposites augmenting cGAS/STING activation by efferocytosis blockade. Small. 2023;19:e2302758. https://doi.org/10.1002/smll.202302758.

Article  CAS  PubMed  Google Scholar 

Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov. 2020;10:26–39. https://doi.org/10.1158/2159-8290.Cd-19-0761.

Article  CAS  PubMed  Google Scholar 

Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, Sun Z, Jiang S, Lu L, Wu MX. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020. https://doi.org/10.1126/science.aau0810.

Article  PubMed  PubMed Central  Google Scholar 

Delvaeye T, Vandenabeele P, Bultynck G, Leybaert L, Krysko DV. Therapeutic targeting of connexin channels: new views and challenges. Trends Mol Med. 2018;24:1036–53. https://doi.org/10.1016/j.molmed.2018.10.005.

Article  CAS  PubMed  Google Scholar 

Li W, Chen QW, Fan JX, Han ZY, Song WF, Zeng X, Zhang XZ. Bacterial biohybrids for invasion of tumor cells promote antigen cross-presentation through gap junction. Adv Mater. 2024. https://doi.org/10.1002/adma.202402532.

Article  PubMed  PubMed Central  Google Scholar 

Rodríguez-Candela Mateos M, Carpintero-Fernández P, Freijanes PS, Mosquera J, Nebril BA, Mayán MD. Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: mechanisms and applications. Biochim Biophys Acta Rev Cancer. 2024. https://doi.org/10.1016/j.bbcan.2024.189173.

Comments (0)

No login
gif