Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram land Jemal A, Global cancer statistics. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2022;2024(74):229–63. https://doi.org/10.3322/caac.21834.
Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, Wistuba II, Rimm DL, Tsao MS, Hirsch FR. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18:345–62. https://doi.org/10.1038/s41571-021-00473-5.
Article CAS PubMed Google Scholar
Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther. 2022;7:331. https://doi.org/10.1038/s41392-022-01136-2.
Article CAS PubMed PubMed Central Google Scholar
Zhang C, Zhang C, Wang H. Immune-checkpoint inhibitor resistance in cancer treatment: current progress and future directions. Cancer Lett. 2023;562:216182. https://doi.org/10.1016/j.canlet.2023.216182.
Article CAS PubMed Google Scholar
Wolchok JD, Chiarion-Sileni V, Rutkowski P, Cowey CL, Schadendorf D, Wagstaff J, Queirolo P, Dummer R, Butler MO, Hill AG, Postow MA, Gaudy-Marqueste C, Medina T, Lao CD, Walker J, Márquez-Rodas I, Haanen J, Guidoboni M, Maio M, Schöffski P, Carlino MS, Sandhu S, Lebbé C, Ascierto PA, Long GV, Ritchings C, Nassar A, Askelson M, Benito MP, Wang W, Hodi FS, Larkin J. Final, 10-year outcomes with nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2024. https://doi.org/10.1056/NEJMoa2407417.
Article PubMed PubMed Central Google Scholar
Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma. Lancet. 2021;398:1002–14. https://doi.org/10.1016/s0140-6736(21)01206-x.
Article CAS PubMed Google Scholar
Killock D. Frontline nivolumab combinations improve OS in ESCC. Nat Rev Clin Oncol. 2022;19:219. https://doi.org/10.1038/s41571-022-00608-2.
Article CAS PubMed Google Scholar
Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G, Zitvogel L. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255–69. https://doi.org/10.1016/j.immuni.2016.06.001.
Article CAS PubMed Google Scholar
Vesely MD, Chen ZT. Resistance mechanisms to anti-PD cancer immunotherapy. Annu Rev Immunol. 2022;40:45–74. https://doi.org/10.1146/annurev-immunol-070621-030155.
Article CAS PubMed Google Scholar
Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P, Gu X. 2023 Advances in immunotherapy for triple-negative breast cancer. Mol Cancer. 2023;22:145. https://doi.org/10.1186/s12943-023-01850-7.
Article CAS PubMed PubMed Central Google Scholar
Xue G, Wang Z, Zheng N, Fang J, Mao C, Li X, Jin G, Ming X, Lu Y. Elimination of acquired resistance to PD-1 blockade via the concurrent depletion of tumour cells and immunosuppressive cells. Nat Biomed Eng. 2021;5:1306–19. https://doi.org/10.1038/s41551-021-00799-6.
Article CAS PubMed PubMed Central Google Scholar
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50. https://doi.org/10.1038/s41591-018-0014-x.
Article CAS PubMed PubMed Central Google Scholar
Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23:1148–56. https://doi.org/10.1038/s41590-022-01267-2.
Article CAS PubMed PubMed Central Google Scholar
Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6. https://doi.org/10.1016/j.cell.2006.01.007.
Article CAS PubMed Google Scholar
Li X, Liu R, Su X, Pan Y, Han X, Shao C, Shi Y. Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer. 2019;18:177. https://doi.org/10.1186/s12943-019-1102-3.
Article PubMed PubMed Central Google Scholar
Chen S, Saeed A, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8:207. https://doi.org/10.1038/s41392-023-01452-1.
Article PubMed PubMed Central Google Scholar
Lee C, Lee H, Cho H, Kim S, Choi I, Hwang YS, Jeong H, Jang H, Pak S, Hwang DS, Han IH, Bae H. Combination of anti-PD-L1 antibody with peptide MEL-dKLA targeting M2 tumor-associated macrophages suppresses breast cancer metastasis. Cancer Commun (Lond). 2022;42:345–9. https://doi.org/10.1002/cac2.12276.
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12:76. https://doi.org/10.1186/s13045-019-0760-3.
Article PubMed PubMed Central Google Scholar
Dvorkin S, Cambier S. New frontiers in the cGAS-STING intracellular DNA-sensing pathway. Immunity. 2024;57:718–30. https://doi.org/10.1016/j.immuni.2024.02.019.
Article CAS PubMed PubMed Central Google Scholar
Flavell RA, Sefik E. Sensing DNA as danger: the discovery of cGAS. Immunity. 2024;57:2251–4. https://doi.org/10.1016/j.immuni.2024.09.009.
Article CAS PubMed Google Scholar
Wang H, Hu S, Chen X, Shi H, Chen C, Sun L, Chen ZJ. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci USA. 2017;114:1637–42. https://doi.org/10.1073/pnas.1621363114.
Article CAS PubMed PubMed Central Google Scholar
Chen Z, Li Z, Huang H, Shen G, Ren Y, Mao X, Wang L, Li Z, Wang W, Li G, Zhao B, Guo W, Hu Y. Cancer immunotherapy based on cell membrane-coated nanocomposites augmenting cGAS/STING activation by efferocytosis blockade. Small. 2023;19:e2302758. https://doi.org/10.1002/smll.202302758.
Article CAS PubMed Google Scholar
Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov. 2020;10:26–39. https://doi.org/10.1158/2159-8290.Cd-19-0761.
Article CAS PubMed Google Scholar
Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, Sun Z, Jiang S, Lu L, Wu MX. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020. https://doi.org/10.1126/science.aau0810.
Article PubMed PubMed Central Google Scholar
Delvaeye T, Vandenabeele P, Bultynck G, Leybaert L, Krysko DV. Therapeutic targeting of connexin channels: new views and challenges. Trends Mol Med. 2018;24:1036–53. https://doi.org/10.1016/j.molmed.2018.10.005.
Article CAS PubMed Google Scholar
Li W, Chen QW, Fan JX, Han ZY, Song WF, Zeng X, Zhang XZ. Bacterial biohybrids for invasion of tumor cells promote antigen cross-presentation through gap junction. Adv Mater. 2024. https://doi.org/10.1002/adma.202402532.
Article PubMed PubMed Central Google Scholar
Rodríguez-Candela Mateos M, Carpintero-Fernández P, Freijanes PS, Mosquera J, Nebril BA, Mayán MD. Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: mechanisms and applications. Biochim Biophys Acta Rev Cancer. 2024. https://doi.org/10.1016/j.bbcan.2024.189173.
Comments (0)