Cowan AJ, Green DJ, Kwok M, et al. Diagnosis and management of multiple myeloma: a review. JAMA. 2022;327(5):464–77.
Article CAS PubMed Google Scholar
Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017;14(7):417–33.
Article CAS PubMed PubMed Central Google Scholar
Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366(6467):818–22.
Article CAS PubMed Google Scholar
Bard JAM, Goodall EA, Greene ER, et al. Structure and function of the 26S proteasome. Annu Rev Biochem. 2018;87:697–724.
Article CAS PubMed PubMed Central Google Scholar
Braten O, Livneh I, Ziv T, et al. Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc Natl Acad Sci U S A. 2016;113(32):E4639-4647.
Article CAS PubMed PubMed Central Google Scholar
Guang MHZ, Kavanagh EL, Dunne LP, et al. Targeting proteotoxic stress in cancer: a review of the role that protein quality control pathways play in oncogenesis. Cancers (Basel). 2019;11(1):66.
Article CAS PubMed Google Scholar
Paradzik T, Bandini C, Mereu E, et al. The landscape of signaling pathways and proteasome inhibitors combinations in multiple myeloma. Cancers (Basel). 2021;13(6):1235.
Article CAS PubMed Google Scholar
Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol. 2006;17(7):1807–19.
Article CAS PubMed Google Scholar
Schmidt M, Finley D. Regulation of proteasome activity in health and disease. Biochim Biophys Acta. 2014;1843(1):13–25.
Article CAS PubMed Google Scholar
Kubiczkova L, Pour L, Sedlarikova L, et al. Proteasome inhibitors—molecular basis and current perspectives in multiple myeloma. J Cell Mol Med. 2014;18(6):947–61.
Article CAS PubMed PubMed Central Google Scholar
Wang J, Wang Y, He S, et al. Proteasome inhibition induces macrophage apoptosis via mitochondrial dysfunction. J Biochem Mol Toxicol. 2021;35(11): e22894.
Article CAS PubMed Google Scholar
Zhang M, Yuan X, Xu B, et al. Anticancer effect of a novel proteasome inhibitor, YSY01A, via G2/M arrest in PC-3M cells in vitro and in vivo. J Cancer. 2015;6(8):701–8.
Article PubMed PubMed Central Google Scholar
Yin D, Zhou H, Kumagai T, et al. Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene. 2005;24(3):344–54.
Article CAS PubMed Google Scholar
Greene ER, Dong K, Martin A. Understanding the 26S proteasome molecular machine from a structural and conformational dynamics perspective. Curr Opin Struct Biol. 2020;61:33–41.
Article CAS PubMed Google Scholar
Davis C, Spaller BL, Matouschek A. Mechanisms of substrate recognition by the 26S proteasome. Curr Opin Struct Biol. 2021;67:161–9.
Article CAS PubMed Google Scholar
Rabl J, Smith DM, Yu Y, et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell. 2008;30(3):360–8.
Article CAS PubMed PubMed Central Google Scholar
Ding Z, Xu C, Sahu I, et al. Structural snapshots of 26S proteasome reveal tetraubiquitin-induced conformations. Mol Cell. 2019;73(6):1150-1161.e6.
Article CAS PubMed Google Scholar
Hempel D, Wojtukiewicz MZ, Kozłowski L, et al. Increased plasma proteasome chymotrypsin-like activity in patients with advanced solid tumors. Tumour Biol. 2011;32(4):753–9.
Article CAS PubMed Google Scholar
Cavo M. Proteasome inhibitor bortezomib for the treatment of multiple myeloma. Leukemia. 2006;20(8):1341–52.
Article CAS PubMed Google Scholar
Kozalak G, Bütün İ, Toyran E, et al. Review on bortezomib resistance in multiple myeloma and potential role of emerging technologies. Pharmaceuticals (Basel). 2023;16(1):111.
Article CAS PubMed Google Scholar
Orlowski RZ, Kuhn DJ. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res. 2008;14(6):1649–57.
Article CAS PubMed Google Scholar
Kortuem KM, Stewart AK. Carfilzomib. Blood. 2013;121(6):893–7.
Article CAS PubMed Google Scholar
Herndon TM, Deisseroth A, Kaminskas E, et al. U.S. Food and Drug Administration approval: carfilzomib for the treatment of multiple myeloma. Clin Cancer Res. 2013;19(17):4559–63.
Article CAS PubMed Google Scholar
Moreau P, Mateos MV, Berenson JR, et al. Once weekly versus twice weekly carfilzomib dosing in patients with relapsed and refractory multiple myeloma (A.R.R.O.W.): interim analysis results of a randomised, phase 3 study. Lancet Oncol. 2018;19(7):953–64.
Article CAS PubMed Google Scholar
Gentile M, Offidani M, Vigna E, et al. Ixazomib for the treatment of multiple myeloma. Expert Opin Invest Drugs. 2015;24(9):1287–98.
Gupta N, Hanley MJ, Xia C, et al. Clinical pharmacology of Ixazomib: the first oral proteasome inhibitor. Clin Pharmacokinet. 2019;58(4):431–49.
Article CAS PubMed Google Scholar
Tzogani K, Florez B, Markey G, et al. European Medicines Agency review of ixazomib (Ninlaro) for the treatment of adult patients with multiple myeloma who have received at least one prior therapy. ESMO Open. 2019;4(5): e000570.
Article PubMed PubMed Central Google Scholar
Zhang J, Sun S, Liu J, et al. Discovery of a novel ubenimex derivative as a first-in-class dual CD13/proteasome inhibitor for the treatment of cancer. Molecules. 2023;28(17):6343.
Article CAS PubMed PubMed Central Google Scholar
Zhang X, Adwal A, Turner AG, et al. New peptidomimetic boronates for selective inhibition of the chymotrypsin-like activity of the 26S proteasome. ACS Med Chem Lett. 2016;7(12):1039–43.
Article CAS PubMed PubMed Central Google Scholar
Dan S, Tsunoda T, Kitahara O, et al. An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res. 2002;62(4):1139–47.
Kong D, Yamori T. JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs. Bioorg Med Chem. 2012;20(6):1947–51.
Comments (0)