Genetic, epigenetic, and molecular determinants of multiple myeloma and precursor plasma cell disorders: a pathophysiological overview

Albagoush SA, Shumway C, Azevedo AM. Multiple Myeloma. Treasure Island (FL): In StatPearls; StatPearls Publishing; 2025.

Google Scholar 

Moscvin M, Evans B, Bianchi G. Dissecting molecular mechanisms of immune microenvironment dysfunction in multiple myeloma and precursor conditions. J Cancer Metastasis Treat. 2023. https://doi.org/10.20517/2394-4722.2022.110.

Article  PubMed  PubMed Central  Google Scholar 

Ghobrial IM, Chabrun F. Is it time to screen for multiple myeloma? Blood. 2025;145:253–5. https://doi.org/10.1182/blood.2024027065.

Article  CAS  PubMed  Google Scholar 

Kaseb H, Annamaraju P, Babiker HM. Monoclonal Gammopathy of Undetermined Significance. Treasure Island (FL): In StatPearls; StatPearls Publishing; 2025.

Google Scholar 

Korde N, Kristinsson SY, Landgren O. Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM): novel biological insights and development of early treatment strategies. Blood. 2011;117:5573–81. https://doi.org/10.1182/blood-2011-01-270140.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van de Donk NWCJ, Mutis T, Poddighe PJ, Lokhorst HM, Zweegman S. Diagnosis, risk stratification and management of monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Int J Lab Hematol. 2016;38:110–22. https://doi.org/10.1111/ijlh.12504.

Article  PubMed  Google Scholar 

Shain, K.H.; Dalton, W.S. Genetic and Environmental Determinants in Multiple Myeloma: Implications for Therapy. In Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics; Tao, J., Sotomayor, E., Eds.; Springer Netherlands: Dordrecht, 2012; pp. 53–82 ISBN 978–94–007–5027–2.

Kristinsson SY, Goldin LR, Bjorkholm M, Koshiol J, Turesson I, Landgren O. Genetic and immune-related factors in the pathogenesis of lymphoproliferative and plasma cell malignancies. Haematologica. 2009;94:1581–9. https://doi.org/10.3324/haematol.2009.008979.

Article  PubMed  PubMed Central  Google Scholar 

Hagen P, Sellin M, Berg S, Zhang J. Increasing genomic discovery in newly diagnosed multiple myeloma: defining disease biology and its correlation to risk. Ann Hematol. 2022;101:1407–20. https://doi.org/10.1007/s00277-022-04856-1.

Article  PubMed  PubMed Central  Google Scholar 

Allegra A, Casciaro M, Barone P, Musolino C, Gangemi S. Epigenetic crosstalk between malignant plasma cells and the tumour microenvironment in multiple myeloma. Cancers. 2022;14:2597. https://doi.org/10.3390/cancers14112597.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Al-Jamal HAN, Johan MF, Islam MA. Dysregulation of non-coding RNAs: roles of miRNAs and lncRNAs in the pathogenesis of multiple myeloma. ncRNA. 2023;9:68. https://doi.org/10.3390/ncrna9060068.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Smedt E, Lui H, Maes K, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. The epigenome in multiple myeloma: impact on tumor cell plasticity and drug response. Front Oncol. 2018;8:566. https://doi.org/10.3389/fonc.2018.00566.

Article  PubMed  PubMed Central  Google Scholar 

Manier S, Kawano Y, Bianchi G, Roccaro AM, Ghobrial IM. Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma. Curr Opin Hematol. 2016;23:426–33. https://doi.org/10.1097/MOH.0000000000000259.

Article  CAS  PubMed  Google Scholar 

García-Sánchez D, González-González A, Alfonso-Fernández A, Del Dujo-Gutiérrez M, Pérez-Campo FM. Communication between bone marrow mesenchymal stem cells and multiple myeloma cells: impact on disease progression. World J Stem Cells. 2023;15:421–37. https://doi.org/10.4252/wjsc.v15.i5.421.

Article  PubMed  PubMed Central  Google Scholar 

Abe M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int J Hematol. 2011;94:334–43. https://doi.org/10.1007/s12185-011-0949-x.

Article  PubMed  Google Scholar 

Forster S, Radpour R, Ochsenbein AF. Molecular and immunological mechanisms of clonal evolution in multiple myeloma. Front Immunol. 2023;14:1243997. https://doi.org/10.3389/fimmu.2023.1243997.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bou Zerdan M, Nasr Lewis, Kassab Joseph, Saba Ludovic, Ghossein Myriam, Yaghi Marita, Dominguez Barbara, Chaulagain CP. Adhesion molecules in multiple myeloma oncogenesis and targeted therapy. Int J Hematol Oncol. 2022;11:39. https://doi.org/10.2217/ijh-2021-0017.

Article  CAS  Google Scholar 

Abroun S, Ishikawa H, Tsuyama N, Liu S, Li F-J, Otsuyama K, Zheng X, Obata M, Kawano MM. Receptor synergy of interleukin-6 (IL-6) and insulin-like growth factor-I in myeloma cells that highly express IL-6 receptor α. Blood. 2004;103:2291–8. https://doi.org/10.1182/blood-2003-07-2187.

Article  CAS  PubMed  Google Scholar 

Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F, Janz S. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res. 2014;59:188–202. https://doi.org/10.1007/s12026-014-8528-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. In Madame Curie Bioscience Database [Internet]; Landes Bioscience, 2013.

Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50:924–40. https://doi.org/10.1016/j.immuni.2019.03.024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J. 2018;8:7. https://doi.org/10.1038/s41408-017-0037-4.

Article  PubMed  PubMed Central  Google Scholar 

Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen W-R, Qi J, Nara Y, Pramusita A, Kinjo R, Mizoguchi I. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci. 2020;21:5169. https://doi.org/10.3390/ijms21145169.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regener. 2020;40:2. https://doi.org/10.1186/s41232-019-0111-3.

Article  CAS  Google Scholar 

Jann J, Gascon S, Roux S, Faucheux N. Influence of the TGF-β superfamily on osteoclasts/osteoblasts balance in physiological and pathological bone conditions. Int J Mol Sci. 2020;21:7597. https://doi.org/10.3390/ijms21207597.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alzrigat M, Párraga AA, Jernberg-Wiklund H. Epigenetics in multiple myeloma: from mechanisms to therapy. Semin Cancer Biol. 2018;51:101–15. https://doi.org/10.1016/j.semcancer.2017.09.007.

Article  CAS  PubMed  Google Scholar 

Gerov V, Gerova D, Micheva I, Nikolova M, Mihaylova G, Galunska B. Dynamics of bone disease biomarkers dickkopf-1 and sclerostin in patients with multiple myeloma. J Clin Med. 2023;12:4440. https://doi.org/10.3390/jcm12134440.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z-L, Chen H-H, Zheng L-L, Sun L-P, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Sig Transduct Target Ther. 2023;8:1–39. https://doi.org/10.1038/s41392-023-01460-1.

Article  CAS  Google Scholar 

Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers. Front Oncol. 2013;3:211. https://doi.org/10.3389/fonc.2013.00211.

Article  PubMed  PubMed Central  Google Scholar 

Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Sig Transduct Target Ther. 2023;8:1–35. https://doi.org/10.1038/s41392-023-01452-1.

Article  Google Scholar 

Comments (0)

No login
gif