Albagoush SA, Shumway C, Azevedo AM. Multiple Myeloma. Treasure Island (FL): In StatPearls; StatPearls Publishing; 2025.
Moscvin M, Evans B, Bianchi G. Dissecting molecular mechanisms of immune microenvironment dysfunction in multiple myeloma and precursor conditions. J Cancer Metastasis Treat. 2023. https://doi.org/10.20517/2394-4722.2022.110.
Article PubMed PubMed Central Google Scholar
Ghobrial IM, Chabrun F. Is it time to screen for multiple myeloma? Blood. 2025;145:253–5. https://doi.org/10.1182/blood.2024027065.
Article CAS PubMed Google Scholar
Kaseb H, Annamaraju P, Babiker HM. Monoclonal Gammopathy of Undetermined Significance. Treasure Island (FL): In StatPearls; StatPearls Publishing; 2025.
Korde N, Kristinsson SY, Landgren O. Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM): novel biological insights and development of early treatment strategies. Blood. 2011;117:5573–81. https://doi.org/10.1182/blood-2011-01-270140.
Article CAS PubMed PubMed Central Google Scholar
van de Donk NWCJ, Mutis T, Poddighe PJ, Lokhorst HM, Zweegman S. Diagnosis, risk stratification and management of monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Int J Lab Hematol. 2016;38:110–22. https://doi.org/10.1111/ijlh.12504.
Shain, K.H.; Dalton, W.S. Genetic and Environmental Determinants in Multiple Myeloma: Implications for Therapy. In Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics; Tao, J., Sotomayor, E., Eds.; Springer Netherlands: Dordrecht, 2012; pp. 53–82 ISBN 978–94–007–5027–2.
Kristinsson SY, Goldin LR, Bjorkholm M, Koshiol J, Turesson I, Landgren O. Genetic and immune-related factors in the pathogenesis of lymphoproliferative and plasma cell malignancies. Haematologica. 2009;94:1581–9. https://doi.org/10.3324/haematol.2009.008979.
Article PubMed PubMed Central Google Scholar
Hagen P, Sellin M, Berg S, Zhang J. Increasing genomic discovery in newly diagnosed multiple myeloma: defining disease biology and its correlation to risk. Ann Hematol. 2022;101:1407–20. https://doi.org/10.1007/s00277-022-04856-1.
Article PubMed PubMed Central Google Scholar
Allegra A, Casciaro M, Barone P, Musolino C, Gangemi S. Epigenetic crosstalk between malignant plasma cells and the tumour microenvironment in multiple myeloma. Cancers. 2022;14:2597. https://doi.org/10.3390/cancers14112597.
Article CAS PubMed PubMed Central Google Scholar
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Al-Jamal HAN, Johan MF, Islam MA. Dysregulation of non-coding RNAs: roles of miRNAs and lncRNAs in the pathogenesis of multiple myeloma. ncRNA. 2023;9:68. https://doi.org/10.3390/ncrna9060068.
Article CAS PubMed PubMed Central Google Scholar
De Smedt E, Lui H, Maes K, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. The epigenome in multiple myeloma: impact on tumor cell plasticity and drug response. Front Oncol. 2018;8:566. https://doi.org/10.3389/fonc.2018.00566.
Article PubMed PubMed Central Google Scholar
Manier S, Kawano Y, Bianchi G, Roccaro AM, Ghobrial IM. Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma. Curr Opin Hematol. 2016;23:426–33. https://doi.org/10.1097/MOH.0000000000000259.
Article CAS PubMed Google Scholar
García-Sánchez D, González-González A, Alfonso-Fernández A, Del Dujo-Gutiérrez M, Pérez-Campo FM. Communication between bone marrow mesenchymal stem cells and multiple myeloma cells: impact on disease progression. World J Stem Cells. 2023;15:421–37. https://doi.org/10.4252/wjsc.v15.i5.421.
Article PubMed PubMed Central Google Scholar
Abe M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int J Hematol. 2011;94:334–43. https://doi.org/10.1007/s12185-011-0949-x.
Forster S, Radpour R, Ochsenbein AF. Molecular and immunological mechanisms of clonal evolution in multiple myeloma. Front Immunol. 2023;14:1243997. https://doi.org/10.3389/fimmu.2023.1243997.
Article CAS PubMed PubMed Central Google Scholar
Bou Zerdan M, Nasr Lewis, Kassab Joseph, Saba Ludovic, Ghossein Myriam, Yaghi Marita, Dominguez Barbara, Chaulagain CP. Adhesion molecules in multiple myeloma oncogenesis and targeted therapy. Int J Hematol Oncol. 2022;11:39. https://doi.org/10.2217/ijh-2021-0017.
Abroun S, Ishikawa H, Tsuyama N, Liu S, Li F-J, Otsuyama K, Zheng X, Obata M, Kawano MM. Receptor synergy of interleukin-6 (IL-6) and insulin-like growth factor-I in myeloma cells that highly express IL-6 receptor α. Blood. 2004;103:2291–8. https://doi.org/10.1182/blood-2003-07-2187.
Article CAS PubMed Google Scholar
Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F, Janz S. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res. 2014;59:188–202. https://doi.org/10.1007/s12026-014-8528-x.
Article CAS PubMed PubMed Central Google Scholar
Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. In Madame Curie Bioscience Database [Internet]; Landes Bioscience, 2013.
Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50:924–40. https://doi.org/10.1016/j.immuni.2019.03.024.
Article CAS PubMed PubMed Central Google Scholar
Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J. 2018;8:7. https://doi.org/10.1038/s41408-017-0037-4.
Article PubMed PubMed Central Google Scholar
Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen W-R, Qi J, Nara Y, Pramusita A, Kinjo R, Mizoguchi I. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci. 2020;21:5169. https://doi.org/10.3390/ijms21145169.
Article CAS PubMed PubMed Central Google Scholar
Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regener. 2020;40:2. https://doi.org/10.1186/s41232-019-0111-3.
Jann J, Gascon S, Roux S, Faucheux N. Influence of the TGF-β superfamily on osteoclasts/osteoblasts balance in physiological and pathological bone conditions. Int J Mol Sci. 2020;21:7597. https://doi.org/10.3390/ijms21207597.
Article CAS PubMed PubMed Central Google Scholar
Alzrigat M, Párraga AA, Jernberg-Wiklund H. Epigenetics in multiple myeloma: from mechanisms to therapy. Semin Cancer Biol. 2018;51:101–15. https://doi.org/10.1016/j.semcancer.2017.09.007.
Article CAS PubMed Google Scholar
Gerov V, Gerova D, Micheva I, Nikolova M, Mihaylova G, Galunska B. Dynamics of bone disease biomarkers dickkopf-1 and sclerostin in patients with multiple myeloma. J Clin Med. 2023;12:4440. https://doi.org/10.3390/jcm12134440.
Article CAS PubMed PubMed Central Google Scholar
Liu Z-L, Chen H-H, Zheng L-L, Sun L-P, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Sig Transduct Target Ther. 2023;8:1–39. https://doi.org/10.1038/s41392-023-01460-1.
Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers. Front Oncol. 2013;3:211. https://doi.org/10.3389/fonc.2013.00211.
Article PubMed PubMed Central Google Scholar
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Sig Transduct Target Ther. 2023;8:1–35. https://doi.org/10.1038/s41392-023-01452-1.
Comments (0)