Advancing the potential of nanoparticles for cancer detection and precision therapeutics

Romero-Trejo D, et al. Anti-cancer potential of casein and its derivatives: novel strategies for cancer treatment. Med Oncol. 2024;41(8):200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar S, et al. Advances in microneedle-based approaches for skin diseases: a comprehensive review of therapeutic applications and future perspectives. Anti-Infect Agents. 2024;22(1):17–35.

Google Scholar 

Dessale M, Mengistu G, Mengist HM. Nanotechnology: a promising approach for cancer diagnosis, therapeutics and theragnosis. Int J Nanomed. 2022;17:3735.

Article  Google Scholar 

Setia A, et al. Nanomedicine and nanotheranostics: special focus on imaging of anticancer drugs induced cardiac toxicity. Nanotheranostics. 2024;8(4):473.

Article  PubMed  PubMed Central  Google Scholar 

Pallavi P, et al. Theranostic dye entrapped in an optimized blended-polymer matrix for effective photodynamic inactivation of diseased cells. Naunyn Schmiedebergs Arch Pharmacol. 2025;398(1):867–80.

Article  CAS  PubMed  Google Scholar 

Upadhyay K, et al. Surface functionalized nanoparticles: a boon to biomedical science. Chem Biol Interact. 2023;380: 110537.

Article  CAS  PubMed  Google Scholar 

Puttasiddaiah R, et al. Emerging nanoparticle-based diagnostics and therapeutics for cancer: innovations and challenges. Pharmaceutics. 2025;17(1):70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Girigoswami A, Girigoswami K. Potential applications of nanoparticles in improving the outcome of lung cancer treatment. Genes. 2023;14(7):1370.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thirumalai, A., et al., Natural Polymer Derivative-based pH responsive Nanoformulations Entrapped Diketo-tautomers of 5-fluorouracil for Enhanced Cancer Therapy. ADMET and DMPK, 2025: p. 2554–2554.

Mazayen ZM, et al. Pharmaceutical nanotechnology: from the bench to the market. Future J Pharma Sci. 2022;8(1):12.

Article  Google Scholar 

Tariq F, et al. Design, optimization & characterization of niosomal & polymeric nanoparticles. Int J Polym Mater Polym Biomater. 2024;73(15):1353–66.

Article  CAS  Google Scholar 

Bhardwaj H, et al. Emerging trends in hybrid nanoparticles: revolutionary advances and promising biomedical applications. Curr Drug Metab. 2024;25(4):248–65.

Article  CAS  PubMed  Google Scholar 

Chen Y, et al. Enhancing cancer immunotherapy: nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharmaceutica Sinica B. 2024;14:3834–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beigi A, et al. Lipid-based nanocarriers for targeted gene delivery in lung cancer therapy: exploring a novel therapeutic paradigm. Curr Gene Ther. 2025;25(2):92–112.

Article  CAS  PubMed  Google Scholar 

Dey S, Hassan S, Pandey RK. Nanomedicine in targeted drug delivery: precision therapeutics for personalized medicine. In: Nanomedicine. Cham: Springer; 2024. p. 179–231.

Chapter  Google Scholar 

Al-Thani, A.N., et al., Nanoparticles in cancer theragnostic and drug delivery: a comprehensive review. Life Sci. 2024; 122899.

Zhuo Y, Zhao Y-G, Zhang Y. Enhancing drug solubility, bioavailability, and targeted therapeutic applications through magnetic nanoparticles. Molecules. 2024;29(20):4854.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel, V., et al., Recent advances in graphene-based materials for application in cancer therapy. 2D Mater: Chem Appl (Part 1), 2024; 183–208.

Lu T, et al. Preparation and anti-cancer activity of transferrin/folic acid double-targeted graphene oxide drug delivery system. J Biomater Appl. 2020;35(1):15–27.

Article  CAS  PubMed  Google Scholar 

Taylor K, Tabish TA, Narayan RJ. Drug release kinetics of DOX-loaded graphene-based nanocarriers for ovarian and breast cancer therapeutics. Appl Sci. 2021;11(23):11151.

Article  CAS  Google Scholar 

Sheikh A, et al. Understanding the novel approach of nanoferroptosis for cancer therapy. Nano-Micro Letters. 2024;16(1):188.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oh JY, et al. Surface functionalization of metal–organic framework nanoparticle for overcoming biological barrier in cancer therapy. Inorg Chem Front. 2024;11(11):3119–35.

Article  CAS  Google Scholar 

Xu W, et al. Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. Biomed Eng/Biomedizinische Technik. 2020;65(2):229–36.

Article  CAS  Google Scholar 

Zou Y, et al. Porphyrin-engineered nanoscale metal-organic frameworks: enhancing photodynamic therapy and ferroptosis in oncology. Front Pharmacol. 2024;15:1481168.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pal K, et al. A critical review on multifunctional smart materials ‘nanographene’emerging avenue: nano-imaging and biosensor applications. Crit Rev Solid State Mater Sci. 2022;47(5):691–707.

Article  CAS  Google Scholar 

Yurddaskal M, Yurddaskal M, Jehad AK. Graphene-based photocatalysts for biomedical applications. In: Graphene-based photocatalysts: from fundamentals to applications. Cham: Springer; 2024. p. 505–27.

Chapter  Google Scholar 

Uzdrowska K, et al. Chasing graphene-based anticancer drugs: where are we now on the biomedical graphene roadmap? Int J Nanomed. 2024. https://doi.org/10.2147/IJN.S447397.

Article  Google Scholar 

Choudhary M, Arora K. Electrochemical biosensors for early detection of cancer. In: Biosensor based advanced cancer diagnostics. Amsterdam: Elsevier; 2022. p. 123–51.

Chapter  Google Scholar 

Guha S, Chakrabarty S. Graphene and its derivatives (GO, rGO and GQD): a comprehensive review of their role in combating COVID-19. Adv Phys: X. 2025;10(1):2435278.

Google Scholar 

Khan R, et al. Recent progress of fluorescent carbon dots and graphene quantum dots for biosensors: synthesis of solution methods and their medical applications. J Fluoresc. 2024;35(5):2623–40.

Article  PubMed  Google Scholar 

Andoh V, et al. The advancing role of nanocomposites in cancer diagnosis and treatment. Int J Nanomed. 2024;19:6099–126.

Article  Google Scholar 

Tiwari S, et al. Photodynamic therapy of cancer using graphene nanomaterials. Expert Opin Drug Deliv. 2024;21(9):1331–48.

Article  CAS  PubMed  Google Scholar 

Semenov KN, et al. Development of graphene-based materials with the targeted action for cancer theranostics. Biochem Mosc. 2024;89(8):1362–91.

Article  CAS  Google Scholar 

Asadi M, et al. Graphene-based hybrid composites for cancer diagnostic and therapy. J Transl Med. 2024;22(1):611.

Article  PubMed  PubMed Central  Google Scholar 

Dilenko H, et al. Graphene-based photodynamic therapy and overcoming cancer resistance mechanisms: a comprehensive review. Int J Nanomed. 2024;19:5637–80.

Article  Google Scholar 

Taghipour YD, et al. An update on dual targeting strategy for cancer treatment. J Control Release. 2022;349:67–96.

Article  CAS  PubMed  Google Scholar 

Muzammal M, et al. Graphene-based nanomaterials are a potent and innovative technology for the treatment of cancer: a review. ChemistrySelect. 2024;9(40): e202403554.

Article  CAS  Google Scholar 

Fu L, et al. Strategies and applications of graphene and its derivatives-based electrochemical sensors in cancer diagnosis. Molecules. 2023;28(18):6719.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohanty B, et al. Metal-organic frameworks (MOFs

Comments (0)

No login
gif