Areti A, Yerra VG, Naidu V, Kumar A (2014) Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol 2:289–295. https://doi.org/10.1016/j.redox.2014.01.006
Article CAS PubMed PubMed Central Google Scholar
Authier N, Gillet JP, Fialip J, Eschalier A, Coudore F (2003) An animal model of nociceptive peripheral neuropathy following repeated cisplatin injections. Exp Neurol 182(1):12–20. https://doi.org/10.1016/s0014-4886(03)00003-7
Article CAS PubMed Google Scholar
Badawi GA, Abd El Fattah MA, Zaki HF, El Sayed MI (2019) Sitagliptin and liraglutide modulate L-dopa effect and attenuate dyskinetic movements in Rotenone-Lesioned rats. Neurotox Res 35(3):635–653. https://doi.org/10.1007/s12640-019-9998-3
Article CAS PubMed Google Scholar
Briyal S, Shah S, Gulati A (2014) Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience 281:269–281. https://doi.org/10.1016/j.neuroscience.2014.09.064
Article CAS PubMed Google Scholar
Calls A, Torres-Espin A, Navarro X, Yuste VJ, Udina E, Bruna J (2021) Cisplatin-induced peripheral neuropathy is associated with neuronal senescence-like response. Neurooncology 23(1):88–99. https://doi.org/10.1093/neuonc/noaa151
Ceyhan D, Kocman AE, Yildirim E, Ozatik O, Aydin S, Kose A (2018) Comparison of the effects of Curcumin, Tramadol and surgical treatments on neuropathic pain induced by chronic constriction injury in rats. Turk Neurosurg 28(2):288–295. https://doi.org/10.5137/1019-5149.JTN.19824-17.0
Chen L, Watson C, Morsch M, Cole NJ, Chung RS, Saunders DN, Yerbury JJ, Vine KL (2017) Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium Phosphate-Lipid nanoparticles. Front Neurosci 11:476. https://doi.org/10.3389/fnins.2017.00476
Article PubMed PubMed Central Google Scholar
Cioroiu C, Weimer LH (2017) Update on Chemotherapy-Induced peripheral neuropathy. Curr Neurol Neurosci Rep 17(6):47. https://doi.org/10.1007/s11910-017-0757-7
Cummings BP, Stanhope KL, Graham JL, Baskin DG, Griffen SC, Nilsson C, Sams A, Knudsen LB, Raun K, Havel PJ (2010) Chronic administration of the glucagon-like peptide-1 analog, Liraglutide, delays the onset of diabetes and lowers triglycerides in UCD-T2DM rats. Diabetes 59(10):2653–2661. https://doi.org/10.2337/db09-1564
Article CAS PubMed PubMed Central Google Scholar
Deuis JR, Dvorakova LS, Vetter I (2017) Methods Used to Evaluate Pain Behaviors in Rodents. Front in Mol Neurosci 10:284. https://doi.org/10.3389/fnmol.2017.00284
Donertas B, Cengelli Unel C, Aydin S, Ulupinar E, Ozatik O, Kaygisiz B, Yildirim E, Erol K (2018) Agmatine co-treatment attenuates allodynia and structural abnormalities in cisplatin-induced neuropathy in rats. Fundam Clin Pharmacol 32(3):288–296. https://doi.org/10.1111/fcp.12351
Article CAS PubMed Google Scholar
Erdogan MA, Taskıran E, Yigittürk G, Erbaş O, Taskıran D (2020) The investigation of therapeutic potential of oxytocin and liraglutide on vincristine-induced neuropathy in rats. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22415
Ferrier J, Marchand F, Balayssac D (2016) Assessment of mechanical allodynia in rats using the electronic von Frey test. BIO-Protoc 6:18. https://doi.org/10.21769/BioProtoc.1933
Fukuda S, Nakagawa S, Tatsumi R, Morofuji Y, Takeshita T, Hayashi K, Tanaka K, Matsuo T, Niwa M (2016) Glucagon-Like Peptide-1 strengthens the barrier integrity in primary cultures of rat brain endothelial cells under basal and hyperglycemia conditions. J Mol Neurosci 59(2):211–219. https://doi.org/10.1007/s12031-015-0696
Article CAS PubMed Google Scholar
Gong N, Xiao Q, Zhu B, Zhang CY, Wang YC, Fan H, Ma AN, Wang YX (2014) Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity. J Neuroscience: Official J Soc Neurosci 34(15):5322–5334. https://doi.org/10.1523/JNEUROSCI.4703-13.2014
Gonzalez LL, Garrie K, Turner MD (2020) Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res 1867(6):118677. https://doi.org/10.1016/j.bbamcr.2020.118677
Article CAS PubMed Google Scholar
Hattori Y, Jojima T, Tomizawa A, Satoh H, Hattori S, Kasai K, Hayashi T (2010) A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia 53(10). https://doi.org/10.1007/s00125-010-1831-8
Jiang X, Zhao W, Zhao T, Yang M, Yuan H, Qian J, Xiang Z (2021) S100A4 in spinal substantia gelatinosa from dorsal root ganglia modulates neuropathic pain in a rodent spinal nerve injury model. J Pain Res 14:665–679. https://doi.org/10.2147/JPR.S293462
Article PubMed PubMed Central Google Scholar
Ma J, Shi M, Zhang X, Liu X, Chen J, Zhang R, Wang X, Zhang H (2018) GLP–1R agonists ameliorate peripheral nerve dysfunction and inflammation via p38 MAPK/NF–kappaB signaling pathways in streptozotocin–induced diabetic rats. Int J Mol Med 41(5):2977–2985. https://doi.org/10.3892/ijmm.2018.3509
Article CAS PubMed Google Scholar
Mc Dougall JJ, Reid AR (2022) Joint damage and neuropathic pain in rats treated with lysophosphatidic acid. Front Immunol 4:13:811402. https://doi.org/10.3389/fimmu.2022.811402
Meijer C, de Vries EG, Marmiroli P, Tredici G, Frattola L, Cavaletti G (1999) Cisplatin-induced DNA-platination in experimental dorsal root ganglia neuronopathy. Neurotoxicology 20(6):883–887 PMID: 10693969
Moetamani-Ahmadi M, Mahmoud Ahmadzadeh A, Alaei M, Zafari N, Negahbanzaferanloo Z, Pourbagher-Shahri AM, Forouzanfar F, Fiuji H, Mahaki H, Khazaei M, Gataa IS, Ferns GA, Peters GJ, Batra J, Lam AK, Giovannetti E, TanzadehPanah H, Avan A (2024) Pegylated nanoliposomal cisplatin ameliorates chemotherapy-induced peripheral neuropathy. Int J Pharm 5:652:123839. https://doi.org/10.1016/j.ijpharm.2024.123839
Moustafa PE, Abdelkader NF, El Awdan SA, El-Shabrawy OA, Zaki HF (2018) Liraglutide ameliorated peripheral neuropathy in diabetic rats: involvement of oxidative stress, inflammation and extracellular matrix remodeling. J Neurochem 146(2):173–185. https://doi.org/10.1111/jnc.14336
Article CAS PubMed Google Scholar
Paccola CC, Gutierrez VP, Longo I, Juliano L, Juliano MA, Giorgi R (2008) Antinociceptive effect of the C-terminus of murine S100A9 protein on experimental neuropathic pain. Peptides 29(10):1806–1814. https://doi.org/10.1016/j.peptides.2008.05.023
Article CAS PubMed Google Scholar
Paladugu L, Gharaibeh A, Kolli N, Learman C, Hall TC, Li L, Rossignol J, Maiti P, Dunbar GL (2021) Liraglutide Has Anti-Inflammatory and Anti-Amyloid Properties in Streptozotocin-Induced and 5xFAD Mouse Models of Alzheimer’s Disease. Int J Mol Sci 22(2). https://doi.org/10.3390/ijms22020860
Article PubMed PubMed Central Google Scholar
Parthsarathy V, Holscher C (2013) Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model. PLoS ONE 8(3):e58784. https://doi.org/10.1371/journal.pone.0058784
Article CAS PubMed PubMed Central Google Scholar
Patera F, Cudzich-Madry A, Huang Z, Fragiadaki M (2019) Renal expression of JAK2 is high in polycystic kidney disease and its Inhibition reduces cystogenesis. Sci Rep 9(1):4491. https://doi.org/10.1038/s41598-019-41106-3
Article CAS PubMed PubMed Central Google Scholar
Perry T, Holloway HW, Weerasuriya A, Mouton PR, Duffy K, Mattison JA, Greig NH (2007) Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy. Exp Neurol 203(2):293–301. https://doi.org/10.1016/j.expneurol.2006.09.028
Article CAS PubMed Google Scholar
Seretny M, Currie GL, Sena ES, Ramnarine S, Grant
Comments (0)