Abogresha NM, Mohammed SS, Hosny MM, Abdallah HY, Gadallah AM, Greish SM (2021) Diosmin mitigates cyclophosphamide induced premature ovarian insufficiency in rat model. Int J Mol Sci 22:3044. https://doi.org/10.3390/ijms22063044
Article CAS PubMed PubMed Central Google Scholar
Aboubakr M, Elshafae SM, Abdelhiee EY, Fadl SE, Soliman A, Abdelkader A, Abdel-Daim MM, Bayoumi KA, Baty RS, Elgendy E, Elalfy A, Baioumy B, Ibrahim SF, Abdeen A (2021) Antioxidant and anti-inflammatory potential of thymoquinone and lycopene mitigate the chlorpyrifos-induced toxic neuropathy. Pharm 14(9):940
Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:49. https://doi.org/10.1186/1477-7827-10-49
Article PubMed PubMed Central Google Scholar
Ahmadian S, Sheshpari S, Pazhang M, Bedate AM, Beheshti R, Abbasi MM, Nouri M, Rahbarghazi R, Mahdipour M (2020) Intra-ovarian injection of platelet-rich plasma into ovarian tissue promoted rejuvenation in the rat model of premature ovarian insufficiency and restored ovulation rate via angiogenesis. Reprod Biol Endocrinol 18(1):78. https://doi.org/10.1186/s12958-020-00638-4
Article CAS PubMed PubMed Central Google Scholar
Akcakavak G, Kazak F, Karatas O, Alakus H, Alakus I, Kirgiz O, Celik Z, Yilmaz Deveci MZ, Ozdemir O, Tuzcu M (2024) Eucalyptol regulates Nrf2 and NF-κB signaling and alleviates gentamicin-induced kidney injury in rats by downregulating oxidative stress, oxidative DNA damage, inflammation, and apoptosis. Toxicol Mech Methods 34(4):413–422. https://doi.org/10.1080/15376516.2023.2297234
Article CAS PubMed Google Scholar
Akomolafe SF, Olasehinde TA, Oyeleye SI, Aluko TB, Adewale OO, Ijomone OM (2020) Curcumin administration mitigates cyclophosphamide-induced oxidative damage and restores alteration of enzymes associated with cognitive function in rats’ brain. Neurotox Res 38(1):199–210. https://doi.org/10.1007/s12640-020-00205-0
Article CAS PubMed Google Scholar
Al-Allaf LI, Attarbashee RKA, Mammdoh KJ (2022) The effect of cyclophosphamide on hippocampal structure of adult male rats (role of rosuvastatin). Mil Med Sci Lett 91(3):256–264. https://doi.org/10.31482/mmsl.2022.022
Alarcon RA (2012) Anticancer system created by acrolein and hydroxyl radical generated in enzymatic oxidation of spermine and other biochemical reactions. Med Hypotheses 79(4):522–530. https://doi.org/10.1016/j.mehy.2012.07.010
Article CAS PubMed Google Scholar
Alhowail AH, Almogbel YS, Abdellatif AA, Alsalehi NF, Alghenaim FA, Aldubayan MA, Felemban SG (2021) CMF and MET treatment induce cognitive impairment through upregulation of IL-1α in rat brain. Eur Rev Med Pharmacol Sci 25(12):4385–4393. https://doi.org/10.26355/eurrev_202106_26148
Article CAS PubMed Google Scholar
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BO, Pinho LBM, Miglino MA, Carreira ACO (2022) Current trends on bioengineering approaches for ovarian microenvironment reconstruction. Tissue Eng Part B Rev 29(3):260–298. https://doi.org/10.1089/ten.TEB.2022.0171
Al-Salih HA, Al-Sharafi NM, Al-Qabi SS, Al-Darwesh AA (2020) The pathological features of cyclophosphamide induced multi-organs toxicity in male wister rats. Syst Rev Pharm 11(6):45–49. https://doi.org/10.31838/srp.2020.6.10
Anitua E, Pascual C, Antequera D, Bolos M, Padilla S, Orive G, Carro E (2014) Plasma rich in growth factors (PRGF-Endoret) reduces neuropathologic hallmarks and improves cognitive functions in an Alzheimer’s disease mouse model. Neurobiol Aging 35(7):1582–1595. https://doi.org/10.1016/j.neurobiolaging.2014.01.009
Article CAS PubMed Google Scholar
Anitua E, Pascual C, Perez-Gonzalez R, Orive G, Carro E (2015) Intranasal PRGF-Endoret enhances neuronal survival and attenuates NF-kappaB-dependent inflammation process in a mouse model of Parkinson’s disease. J Control Release 203:170–180. https://doi.org/10.1016/j.jconrel.2015.02.030
Article CAS PubMed Google Scholar
Arundel C, Lewis JH (2007) Drug-induced liver disease in 2006. Curr Opin Gastroenterol 23:244–254. https://doi.org/10.1097/mog.0b013e3280b17dfb
Baharmi S, Kalantari H, Kalantar M, Goudarzi M, Mansouri E, Kalantar H (2022) Pretreatment with gallic acid mitigates cyclophosphamide induced inflammation and oxidative stress in mice. Curr Mol Pharmacol 15(1):204–212. https://doi.org/10.2174/1874467214666210531162741
Article CAS PubMed Google Scholar
Baker M, Markman M, Niu J (2014) Cyclophosphamide-induced severeacute hyponatremic encephalopathy in patients with breast cancer: report of two cases. Case Rep Oncol 7:550–554. https://doi.org/10.1159/000365832
Article PubMed PubMed Central Google Scholar
Barreto A, Braun TR (2016) A method to induce interleukin-1 receptor antagonist protein from autologous whole blood. Cytokine 81:137–141. https://doi.org/10.1016/j.cyto.2016.03.008
Article CAS PubMed Google Scholar
Bayat M, Zabihi S, Karbalaei N, Haghani M (2020) Time-dependent effects of platelet-rich plasma on the memory and hippocampal synaptic plasticity impairment in vascular dementia induced by chronic cerebral hypoperfusion. Brain Res Bull 164:299–306. https://doi.org/10.1016/j.brainresbull.2020.08.033
Article CAS PubMed Google Scholar
Behairy A, Elkomy A, Elsayed F, Gaballa MMS, Soliman A, Aboubakr M (2024) Antioxidant and anti-inflammatory potential of spirulina and thymoquinone mitigate the methotrexate-induced neurotoxicity. Naunyn Schmiedebergs Arch Pharmacol 397(3):1875–1888. https://doi.org/10.1007/s00210-023-02739-4
Article CAS PubMed Google Scholar
Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S (2014) Protective effect of selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl 29(2):303–317. https://doi.org/10.1177/0885328214523323
Article CAS PubMed Google Scholar
Borhani-Haghighi M, Mohamadi Y (2019) The therapeutic effect of platelet-rich plasma on the experimental autoimmune encephalomyelitis mice. J Neuroimmunol 333:476958. https://doi.org/10.1016/j.jneuroim.2019.04.018
Article CAS PubMed Google Scholar
Borrione P, Gianfrancesco AD, Pereira MT, Pigozzi F (2010) Platelet-rich plasma in muscle healing. Am J Phys Med Rehabil 89(10):854–861. https://doi.org/10.1097/PHM.0b013e3181f1c1c7
Bryda EC (2013) The mighty mouse: the impact of rodents on advances in biomedical research. Mo Med 110(3):207–211
PubMed PubMed Central Google Scholar
Cruz-Valencia R, Arvizu-Flores AA, Rosas-Rodríguez JA, Valenzuela-Soto EM (2021) Effect of the drug cyclophosphamide on the activity of porcine kidney betaine aldehyde dehydrogenase. Mol Cell Biochem 476(3):1467–1475. https://doi.org/10.1007/s11010-020-04010-3
Article CAS PubMed Google Scholar
Dağ Y, Şengül E, Selçuk M, Yıldırım S, Çelebi F, Çınar D (2018) The protective effects of naringin on some blood paremeters and kidney histopathology in cyclophosphamide induced nephrotoxicity in rats. Atatürk Univ J Vet Sci 13:219–228. https://doi.org/10.17094/ataunivbd.384225
Devi H, Mazumder P (2016) Methanolic extract of curcuma caesia roxb. prevents the toxicity caused by cyclophosphamide to bone marrow cells, liver and kidney of mice. Pharmacogn Res 8(1):43–49. https://doi.org/10.4103/0974-8490.171106
Djousse L, Levy D, Cupples LA, Evans JC, D’Agostino RB, Ellison R (2001) Total serum bilirubin and risk of cardiovascular disease in the Framingham offspring study. Am J Cardiol 87:1196–1200. https://doi.org/10.1016/s0002-9149(01)01494-1
Article CAS PubMed Google Scholar
Doustimotlagh AH, Kokhdan EP, Vakilpour H, Khalvati B, Barmak MJ, Sadeghi H, Asfaram A (2020) Protective effect of Nasturtium officinale R. Br and quercetin against cyclophosphamideinduced hepatotoxicity in rats. Mol Biol Rep 47:5001–5012. https://doi.org/10.1007/s11033-020-05556-7
Article CAS PubMed Google Scholar
Elahi N, Ai J, Makoolati Z (2023) A review on treatment of premature ovarian insufficiency: characteristics, limitations, and challenges of stem cell versus ExosomeTherapy. Vet Med Int 17:5760011.
Comments (0)