A diet-driven metabolic dysfunction-associated steatohepatitis (MASH) mouse model resembles the corresponding human disease

Asgharpour A, Cazanave SC, Pacana T, Seneshaw M, Vincent R, Banini BA et al (2016) A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J Hepatol 65:579–588. https://doi.org/10.1016/j.jhep.2016.05.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babicki S, Arndt D, Marcu A et al (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44:W147–W153. https://doi.org/10.1093/nar/gkw419

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bacil GP, Romualdo GR, Piagge PMFD et al (2023) Unraveling hepatic metabolomic profiles and morphological outcomes in a hybrid model of NASH in different mouse strains. Antioxidants 12:1–16. https://doi.org/10.3390/antiox12020290

Article  CAS  Google Scholar 

Bissig-Choisat B, Alves-Bezerra M, Zorman B et al (2021) A human liver chimeric mouse model for non-alcoholic fatty liver disease. JHEP Rep 3:100281. https://doi.org/10.1016/j.jhepr.2021.100281

Article  PubMed  PubMed Central  Google Scholar 

Clapper JR, Hendricks MD, Gu G et al (2013) Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am J Physiol Gastrointest Liver Physiol 305:G483–G495. https://doi.org/10.1152/ajpgi.00079.2013

Article  CAS  PubMed  Google Scholar 

Deshpande D, Chhugani K, Chang Y, et al (2023) RNA-seq data science: from raw data to effective interpretation. Front Genet 14:997383. https://doi.org/10.3389/fgene.2023.997383

Flessa CM, Nasiri-Ansari N, Kyrou I, et al (2022) Genetic and diet-induced animal models for non-alcoholic fatty liver disease (NAFLD) research. Int J Mol Sci 23:15791. https://doi.org/10.3390/ijms232415791

Fu Y, Hua Y, Alam N (2024) Progress in the study of animal models of metabolic aysfunction-associated steatotic liver disease. Nutrients 16:3120. https://doi.org/10.3390/nu16183120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gautam J, Aggarwal H, Kumari D et al (2024) A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut Microbiome profile in the C57BL/6J mouse. Biochim Biophys Acta Mol Cell Biol Lipids 1869:159545. https://doi.org/10.1016/j.bbalip.2024.159545

Article  CAS  PubMed  Google Scholar 

Green CD, Weigel C, Brown RDR et al (2022) A new preclinical model of western diet-induced progression of non-alcoholic steatohepatitis to hepatocellular carcinoma. FASEB J 36:e22372. https://doi.org/10.1096/fj.202200346R

Article  CAS  PubMed  Google Scholar 

Greve S, Kuhn GA, Saenz-de-Juano MD, Ghosh A et al (2022) The major urinary protein gene cluster knockout mouse as a novel model for translational metabolism research. Sci Rep 12:13161. https://doi.org/10.1038/s41598-022-17195-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hagström H, Shang Y, Hegmar H et al (2024) Natural history and progression of metabolic dysfunction-associated steatotic liver disease. Lancet Gastroenterol Hepatol 9:944–956. https://doi.org/10.1016/S2468-1253(24)00193-6

Article  PubMed  Google Scholar 

Hansen HH, Ægidius HM, Oró D et al (2020) Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol 20:210. https://doi.org/10.1186/s12876-020-01356-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrison SA, Bedossa P, Guy CD et al (2024) A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med 390:497–509. https://doi.org/10.1056/nejmoa2309000

Article  PubMed  Google Scholar 

Horie Y, Suzuki A, Kataoka E et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783. https://doi.org/10.1172/JCI20513

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

Article  CAS  PubMed  Google Scholar 

Im YR, Hunter H, de Gracia Hahn D et al (2021) A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD. Hepatology 74:1884–1901. https://doi.org/10.1002/hep.31897

Article  CAS  PubMed  Google Scholar 

Kilkenny C, Browne WJ, Cuthill IC et al (2013) Improving bioscience research reporting: the arrive guidelines for reporting animal research. Animals 4:35–44. https://doi.org/10.3390/ani4010035

Article  Google Scholar 

Kisoh K, Sugahara G, Ogawa Y (2021) Estimating drug efficacy with a diet-induced NASH model in chimeric mice with humanized livers. Biomedicines 9:1647. https://doi.org/10.3390/biomedicines9111647

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleiner DE, Brunt EM, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321. https://doi.org/10.1002/hep.20701

Article  PubMed  Google Scholar 

Kubota N, Kado S, Kano M et al (2013) A high-fat diet and multiple administration of carbon tetrachloride induces liver injury and pathological features associated with non-alcoholic steatohepatitis in mice. Clin Exp Pharmacol Physiol 40:422–430. https://doi.org/10.1111/1440-1681.12102

Article  CAS  PubMed  Google Scholar 

Liang W, Menke AL, Driessen A et al (2014) Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS ONE 9:1–17. https://doi.org/10.1371/journal.pone.0115922

Article  CAS  Google Scholar 

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:1–21. https://doi.org/10.1186/s13059-014-0550-8

Article  CAS  Google Scholar 

Lu S, Wang Y, Liu J (2022) Tumor necrosis factor-α signaling in nonalcoholic steatohepatitis and targeted therapies. J Genet Genomics 49(4):269–278. https://doi.org/10.1016/j.jgg.2021.09.009

Article  CAS  PubMed  Google Scholar 

Makri ES, Xanthopoulos K, Mavrommatis Parasidis P et al (2024) Partial validation of a six-month high-fat diet and fructose-glucose drink combination as a mouse model of nonalcoholic fatty liver disease. Endocrine 85:704–716. https://doi.org/10.1007/s12020-024-03769-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Márquez-Quiroga LV, Arellanes-Robledo J, Vásquez-Garzón VR et al (2022) Models of nonalcoholic steatohepatitis potentiated by chemical inducers leading to hepatocellular carcinoma. Biochem Pharmacol 195:114845. https://doi.org/10.1016/j.bcp.2021.114845

Article  CAS  PubMed  Google Scholar 

Matsumoto M, Hada N, Sakamaki Y, et L (2013) An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int J Exp Pathol 94:93–103. https://doi.org/10.1111/iep.12008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao L, Targher G, Byrne CD et al (2024) Current status and future trends of the global burden of MASLD. Trends Endocrinol Metab 35:697–707. https://doi.org/10.1016/j.tem.2024.02.007

Article  CAS  PubMed  Google Scholar 

Okazaki I, Noro T, Tsutsui N et al (2014) Fibrogenesis and carcinogenesis in nonalcoholic steatohepatitis (NASH): involvement of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs). Cancers (Basel) 2014;6(3):1220–1255. https://doi.org/10.3390/cancers6031220

Rinella ME, Lazarus JV, Ratziu V et al (2024) A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78:1966–1986. https://doi.org/10.1097/HEP.0000000000000520

Article  Google Scholar 

Romualdo GR, Valente LC, Sprocatti AC et al (2022) A western diet-induced mouse model of non-alcoholic fatty liver disease associated to metabolic outcomes: features of gut microbiome-liver-adipose tissue axis. Nutrition 103–104:111836. https://doi.org/10.1016/j.nut.2022.111836

Article 

Comments (0)

No login
gif