Identification of MMP14 and MKLN1 as colorectal cancer susceptibility genes and drug-repositioning candidates from a genome-wide association study

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49.

Article  PubMed  Google Scholar 

Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi J, John A, Lim YC, Kibria KMK, Mohiuddin AKM, Ming LC, et al. Colorectal cancer: a review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel). 2022;14:1732.

Article  PubMed  Google Scholar 

Kang MJ, Jung KW, Bang SH, Choi SH, Park EH, Yun EH, Kim HJ, Kong HJ, Im JS, Seo HG. Community of population-based regional cancer r: cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2020. Cancer Res Treat. 2023;55:385–99.

Article  PubMed  PubMed Central  Google Scholar 

Jun S, Park H, Kim UJ, Choi EJ, Lee HA, Park B, Lee SY, Jee SH, Park H. Cancer risk based on alcohol consumption levels: a comprehensive systematic review and meta-analysis. Epidemiol Health. 2023;45:e2023092.

Article  PubMed  PubMed Central  Google Scholar 

An S, Park S. Association of physical activity and sedentary behavior with the risk of colorectal cancer. J Korean Med Sci. 2022;37:e158.

Article  PubMed  PubMed Central  Google Scholar 

Khil H, Kim SM, Hong S, Gil HM, Cheon E, Lee DH, Kim YA, Keum N. Time trends of colorectal cancer incidence and associated lifestyle factors in South Korea. Sci Rep. 2021;11:2413.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, Graff RE, Holst K, Moller S, Unger RH, et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA. 2016;315:68–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish family-cancer database. Int J Cancer. 2002;99:260–6.

Article  CAS  PubMed  Google Scholar 

Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.

Article  CAS  PubMed  Google Scholar 

Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, Conti DV, Qu C, Jeon J, Edlund CK, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51:76–87.

Article  CAS  PubMed  Google Scholar 

Jia WH, Zhang B, Matsuo K, Shin A, Xiang YB, Jee SH, Kim DH, Ren Z, Cai Q, Long J, et al. Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer. Nat Genet. 2013;45:191–6.

Article  CAS  PubMed  Google Scholar 

Study C, Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, Chandler I, Vijayakrishnan J, Sullivan K, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 2008;40:1426–35.

Article  Google Scholar 

Pierce SE, Booms A, Prahl J, van der Schans EJC, Tyson T, Coetzee GA. Post-GWAS knowledge gap: the how, where, and when. NPJ Parkinsons Dis. 2020;6:23.

Article  PubMed  PubMed Central  Google Scholar 

Ke J, Lou J, Chen X, Li J, Liu C, Gong Y, Yang Y, Zhu Y, Zhang Y, Gong J. Identification of a potential regulatory variant for colorectal cancer risk mapping to chromosome 5q31.1: a Post-GWAS study. PLoS One. 2015;10:e0138478.

Article  PubMed  PubMed Central  Google Scholar 

Wang HM, Chang TH, Lin FM, Chao TH, Huang WC, Liang C, Chu CF, Chiu CM, Wu WY, Chen MC, et al. A new method for post Genome-Wide Association Study (GWAS) analysis of colorectal cancer in Taiwan. Gene. 2013;518:107–13.

Article  CAS  PubMed  Google Scholar 

Rosic G. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials. Adv Biol Earth Sci. 2024. https://doi.org/10.62476/abes9s11.

Article  Google Scholar 

Nasibova A, Cabbarova Z, Khalilov R. The modern perspectives of nanomaterial applications in cancer treatment and drug delivery. Adv Biol Earth Sci. 2024;9:330.

Article  Google Scholar 

Bell N, Uffelmann E, van Walree E, de Leeuw C, Posthuma D. Using genome-wide association results to identify drug repositioning candidates. medRxiv. 2022. https://doi.org/10.1101/2022.09.06.22279660.

Article  PubMed  PubMed Central  Google Scholar 

Irham LM, Wong HS, Chou WH, Adikusuma W, Mugiyanto E, Huang WC, Chang WC. Integration of genetic variants and gene network for drug repositioning in colorectal cancer. Pharmacol Res. 2020;161:105203.

Article  CAS  PubMed  Google Scholar 

Choi CK, Yang JH, Shin MH, Cho SH, Kweon SS. No association between genetically predicted C-reactive protein levels and colorectal cancer survival in Korean: two-sample Mendelian randomization analysis. Epidemiol Health. 2023;45:e2023039.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moon S, Kim YJ, Han S, Hwang MY, Shin DM, Park MY, Lu Y, Yoon K, Jang HM, Kim YK, et al. The Korea Biobank array: design and identification of coding variants associated with blood biochemical traits. Sci Rep. 2019;9:1382.

Article  PubMed  PubMed Central  Google Scholar 

Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balduzzi S, Rucker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22:153–60.

Article  PubMed  PubMed Central  Google Scholar 

Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31:3555–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X, Liu X. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics Proteomics Bioinform. 2021;19:619–28.

Article  Google Scholar 

Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 1826;2017:8.

Google Scholar 

Rentzsch P, Schubach M, Shendure J, Kircher M. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13:31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carithers LJ, Moore HM. The genotype-tissue expression (GTEx) project. Biopreserv Biobank. 2015;13:307–8.

Article  PubMed  PubMed Central  Google Scholar 

Huang K, Fu T, Glass LM, Zitnik M, Xiao C, Sun J. DeepPurpose: a deep learning library for drug-target interaction prediction. Bioinformatics. 2021;36:5545–7.

Article 

Comments (0)

No login
gif