Derakhshan, F., & Reis-Filho, J. S. (2022). Pathogenesis of triple-negative breast cancer. Annual review of pathology, 17, 181–204.
Article CAS PubMed PubMed Central Google Scholar
Gupta, I., Sareyeldin, R. M., Al-Hashimi, I., Al-Thawadi, H. A., Al Farsi, H., Vranic, S., & Al Moustafa, A. E. (2019). Triple negative breast cancer profile, from gene to microRNA, in relation to ethnicity. Cancers, 11, 363.
Article CAS PubMed PubMed Central Google Scholar
Lee, K. L., Kuo, Y. C., Ho, Y. S., & Huang, Y. H. (2019). Triple-negative breast cancer: current understanding and future therapeutic breakthrough targeting cancer stemness. Cancers, 11, 1334.
Article CAS PubMed PubMed Central Google Scholar
Chen, N., Bulsara, S., Hilsenbeck, S. G., Rimawi, M. F., & Nangia, J. R. (2021). Neoadjuvant weekly carboplatin and paclitaxel followed by dose dense adriamycin/cyclophosphamide in locally advanced triple negative breast cancer: A single-center experience in a safety net hospital. Journal of Clinical Oncology, 39, e1262.
Diéras, V., Han, H. S., Kaufman, B., Wildiers, H., Friedlander, M., Ayoub, J. P., Puhalla, S. L., Bondarenko, I., Campone, M., Jakobsen, E. H., Jalving, M., Oprean, C., Palácová, M., Park, Y. H., Shparyk, Y., Yañez, E., Khandelwal, N., Kundu, M. G., Dudley, M., Ratajczak, C. K., Maag, D., & Arun, B. K. (2020). Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): A randomised, double-blind, placebo-controlled, phase 3 trial. The lancet oncology, 21, 1269–1282.
Sousa, G. F., Wlodarczyk, S. R., & Monteiro, G. (2014). Carboplatin: molecular mechanisms of action associated with chemoresistance. Brazilian Journal of Pharmaceutical Sciences, 50, 693–701.
Guidolin, V., Jacobs, F. C., MacMillan, M. L., Villalta, P. W., & Balbo, S. (2023). Liquid chromatography-mass spectrometry screening of cyclophosphamide DNA damage in vitro and in patients undergoing chemotherapy treatment. Chemical Research in Toxicology, 36, 1278–1289.
Article CAS PubMed PubMed Central Google Scholar
Ahlmann, M., & Hempel, G. (2016). The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemotherapy and Pharmacology, 78, 661–671.
Article CAS PubMed Google Scholar
Swan, D., Gurney, M., Krawczyk, J., Ryan, A. E., & O’Dwyer, M. (2020). Beyond DNA damage: exploring the immunomodulatory effects of cyclophosphamide in multiple myeloma. HemaSphere, 4, e350.
Article PubMed PubMed Central Google Scholar
Ferrari, P., Scatena, C., Ghilli, M., Bargagna, I., Lorenzini, G., & Nicolini, A. (2022). Molecular mechanisms, biomarkers and emerging therapies for chemotherapy resistant TNBC. International Journal of Molecular Sciences, 23, 1665.
Article CAS PubMed PubMed Central Google Scholar
Nedeljković, M., & Damjanović, A. (2019). Mechanisms of chemotherapy resistance in triple-negative breast cancer—How we can rise to the challenge. Cells, 8, 957.
Article PubMed PubMed Central Google Scholar
Vagia, E., Mahalingam, D., & Cristofanilli, M. (2020). The landscape of targeted therapies in TNBC. Cancers, 12, 916.
Article CAS PubMed PubMed Central Google Scholar
Breccia, M., & Lo-Coco, F. (2012). Arsenic trioxide for management of acute promyelocytic leukemia: current evidence on its role in front-line therapy and recurrent disease. Expert Opinion on Pharmacotherapy, 13, 1031–1043.
Article CAS PubMed Google Scholar
Zhang, S., Ma, C., Pang, H., Zeng, F., Cheng, L., Fang, B., Ma, J., Shi, Y., Hong, H., Chen, J., Wang, Z., & Xia, J. (2016). Arsenic trioxide suppresses cell growth and migration via inhibition of miR-27a in breast cancer cells. Biochemical and Biophysical Research Communications, 469, 55–61.
Article CAS PubMed Google Scholar
Jiang, F., Li, Y., Si, L., Zhang, Z., & Li, Z. (2019). Interaction of EZH2 and P65 is involved in the arsenic trioxide-induced anti-angiogenesis in human triple-negative breast cancer cells. Cell Biology and Toxicology, 35, 361–371.
Article CAS PubMed Google Scholar
Skoczynska, A., & Skoczynska, M. (2022). Breast cancer and arsenic anticancer effects: Systematic review of the experimental data from in vitro studies. BioMed Research International, 2022, 8030931.
Article PubMed PubMed Central Google Scholar
Xin, X., Wen, T., Gong, L. B., Deng, M. M., Hou, K. Z., Xu, L., Shi, S., Qu, X. J., Liu, Y. P., Che, X. F., & Teng, Y. E. (2020). Inhibition of FEN1 increases arsenic trioxide-induced ROS accumulation and cell death: Novel therapeutic potential for triple negative breast cancer. Frontiers in Oncology, 10, 425.
Article PubMed PubMed Central Google Scholar
Li, Y., Qu, X., Qu, J., Zhang, Y., Liu, J., Teng, Y., Hu, X., Hou, K., & Liu, Y. (2009). Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer Letters, 284, 208–215.
Article CAS PubMed Google Scholar
Liu, Q., Hilsenbeck, S., & Gazitt, Y. (2003). Arsenic trioxide–induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood, 101, 4078–4087.
Article CAS PubMed Google Scholar
Gazitt, C. A. Y. (2003). Arsenic trioxide selectively induces early and extensive apoptosis via the APO2/caspase-8 pathway engaging the mitochondrial pathway in myeloma cells with mutant p53. Cell Cycle, 2, 355–365.
Almasan, A., & Ashkenazi, A. (2003). Apo2L/TRAIL: Apoptosis signaling, biology, and potential for cancer therapy. Cytokine and Growth Factor Reviews, 14, 337–348.
Article CAS PubMed Google Scholar
LeBlanc, H. N., & Ashkenazi, A. (2003). Apo2L/TRAIL and its death and decoy receptors. Cell Death and Differentiation, 10, 66–75.
Article CAS PubMed Google Scholar
Dugo, E. B., Yedjou, C. G., Stevens, J. J., & Tchounwou, P. B. (2017). Therapeutic potential of arsenic trioxide (ATO) in treatment of hepatocellular carcinoma: Role of oxidative stress in ATO-induced apoptosis. Annals of Clinical Pathology, 5, 1101.
PubMed PubMed Central Google Scholar
Jambrovics, K., Poliska, S., Scholtz, B., Uray, I. P., & Balajthy, Z. (2023). ATO increases ROS production and apoptosis of cells by enhancing calpain-mediated degradation of the cancer survival protein TG2. International Journal of Molecular Sciences, 24, 10938.
Article CAS PubMed PubMed Central Google Scholar
Hrgovic, I., Zöller, E., Doll, M., Hailemariam-Jahn, T., Jakob, T., Kaufmann, R., Meissner, M., & Kleemann, J. (2023). Arsenic trioxide decreases lymphangiogenesis by inducing apoptotic pathways and inhibition of important endothelial cell receptors. Current Issues in Molecular Biology, 46, 67–80.
Article PubMed PubMed Central Google Scholar
Zhang, Z., Yi, J., Xie, B., Chen, J., Zhang, X., Wang, L., Wang, J., Hou, J., & Wei, H. (2022). Parkin, as a regulator, participates in arsenic trioxide-triggered mitophagy in HeLa cells. Current Issues in Molecular Biology, 44, 2759–2771.
Article CAS PubMed Google Scholar
Wen, A., Wang, J., Deng, Q., Ren, T., Yang, J., Wen, G., & Ou, D. (2024). The anti-inflammatory effect of arsenic trioxide effectively mitigates the pathogenic process in local chickens with avian leukosis. Poultry Science, 103, 104288.
Article CAS PubMed PubMed Central Google Scholar
Kim, E. H., Yoon, M. J., Kim, S. U., Kwon, T. K., Sohn, S., & Choi, K. S. (2008). Arsenic trioxide sensitizes human glioma cells, but not normal astrocytes, to TRAIL-induced apoptosis via CCAAT/enhancer-binding protein homologous protein-dependent DR5 up-regulation. Cancer Research, 68, 266–275.
Article CAS PubMed Google Scholar
Szegezdi, E., Cahill, S., Meyer, M., O’Dwyer, M., & Samali, A. (2006). TRAIL sensitisation by arsenic trioxide is caspase-8 dependent and involves modulation of death receptor components and Akt. British Journal of Cancer, 94, 398–406.
Comments (0)