Synergistic Enhancement of Apo2L/TRAIL and DR4-Induced Apoptosis by Arsenic Trioxide in Triple-Negative Breast Cancer Cells: A Comparison to Conventional Chemotherapy

Derakhshan, F., & Reis-Filho, J. S. (2022). Pathogenesis of triple-negative breast cancer. Annual review of pathology, 17, 181–204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta, I., Sareyeldin, R. M., Al-Hashimi, I., Al-Thawadi, H. A., Al Farsi, H., Vranic, S., & Al Moustafa, A. E. (2019). Triple negative breast cancer profile, from gene to microRNA, in relation to ethnicity. Cancers, 11, 363.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, K. L., Kuo, Y. C., Ho, Y. S., & Huang, Y. H. (2019). Triple-negative breast cancer: current understanding and future therapeutic breakthrough targeting cancer stemness. Cancers, 11, 1334.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, N., Bulsara, S., Hilsenbeck, S. G., Rimawi, M. F., & Nangia, J. R. (2021). Neoadjuvant weekly carboplatin and paclitaxel followed by dose dense adriamycin/cyclophosphamide in locally advanced triple negative breast cancer: A single-center experience in a safety net hospital. Journal of Clinical Oncology, 39, e1262.

Google Scholar 

Diéras, V., Han, H. S., Kaufman, B., Wildiers, H., Friedlander, M., Ayoub, J. P., Puhalla, S. L., Bondarenko, I., Campone, M., Jakobsen, E. H., Jalving, M., Oprean, C., Palácová, M., Park, Y. H., Shparyk, Y., Yañez, E., Khandelwal, N., Kundu, M. G., Dudley, M., Ratajczak, C. K., Maag, D., & Arun, B. K. (2020). Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): A randomised, double-blind, placebo-controlled, phase 3 trial. The lancet oncology, 21, 1269–1282.

Article  PubMed  Google Scholar 

Sousa, G. F., Wlodarczyk, S. R., & Monteiro, G. (2014). Carboplatin: molecular mechanisms of action associated with chemoresistance. Brazilian Journal of Pharmaceutical Sciences, 50, 693–701.

Article  Google Scholar 

Guidolin, V., Jacobs, F. C., MacMillan, M. L., Villalta, P. W., & Balbo, S. (2023). Liquid chromatography-mass spectrometry screening of cyclophosphamide DNA damage in vitro and in patients undergoing chemotherapy treatment. Chemical Research in Toxicology, 36, 1278–1289.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahlmann, M., & Hempel, G. (2016). The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemotherapy and Pharmacology, 78, 661–671.

Article  CAS  PubMed  Google Scholar 

Swan, D., Gurney, M., Krawczyk, J., Ryan, A. E., & O’Dwyer, M. (2020). Beyond DNA damage: exploring the immunomodulatory effects of cyclophosphamide in multiple myeloma. HemaSphere, 4, e350.

Article  PubMed  PubMed Central  Google Scholar 

Ferrari, P., Scatena, C., Ghilli, M., Bargagna, I., Lorenzini, G., & Nicolini, A. (2022). Molecular mechanisms, biomarkers and emerging therapies for chemotherapy resistant TNBC. International Journal of Molecular Sciences, 23, 1665.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nedeljković, M., & Damjanović, A. (2019). Mechanisms of chemotherapy resistance in triple-negative breast cancer—How we can rise to the challenge. Cells, 8, 957.

Article  PubMed  PubMed Central  Google Scholar 

Vagia, E., Mahalingam, D., & Cristofanilli, M. (2020). The landscape of targeted therapies in TNBC. Cancers, 12, 916.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breccia, M., & Lo-Coco, F. (2012). Arsenic trioxide for management of acute promyelocytic leukemia: current evidence on its role in front-line therapy and recurrent disease. Expert Opinion on Pharmacotherapy, 13, 1031–1043.

Article  CAS  PubMed  Google Scholar 

Zhang, S., Ma, C., Pang, H., Zeng, F., Cheng, L., Fang, B., Ma, J., Shi, Y., Hong, H., Chen, J., Wang, Z., & Xia, J. (2016). Arsenic trioxide suppresses cell growth and migration via inhibition of miR-27a in breast cancer cells. Biochemical and Biophysical Research Communications, 469, 55–61.

Article  CAS  PubMed  Google Scholar 

Jiang, F., Li, Y., Si, L., Zhang, Z., & Li, Z. (2019). Interaction of EZH2 and P65 is involved in the arsenic trioxide-induced anti-angiogenesis in human triple-negative breast cancer cells. Cell Biology and Toxicology, 35, 361–371.

Article  CAS  PubMed  Google Scholar 

Skoczynska, A., & Skoczynska, M. (2022). Breast cancer and arsenic anticancer effects: Systematic review of the experimental data from in vitro studies. BioMed Research International, 2022, 8030931.

Article  PubMed  PubMed Central  Google Scholar 

Xin, X., Wen, T., Gong, L. B., Deng, M. M., Hou, K. Z., Xu, L., Shi, S., Qu, X. J., Liu, Y. P., Che, X. F., & Teng, Y. E. (2020). Inhibition of FEN1 increases arsenic trioxide-induced ROS accumulation and cell death: Novel therapeutic potential for triple negative breast cancer. Frontiers in Oncology, 10, 425.

Article  PubMed  PubMed Central  Google Scholar 

Li, Y., Qu, X., Qu, J., Zhang, Y., Liu, J., Teng, Y., Hu, X., Hou, K., & Liu, Y. (2009). Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer Letters, 284, 208–215.

Article  CAS  PubMed  Google Scholar 

Liu, Q., Hilsenbeck, S., & Gazitt, Y. (2003). Arsenic trioxide–induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood, 101, 4078–4087.

Article  CAS  PubMed  Google Scholar 

Gazitt, C. A. Y. (2003). Arsenic trioxide selectively induces early and extensive apoptosis via the APO2/caspase-8 pathway engaging the mitochondrial pathway in myeloma cells with mutant p53. Cell Cycle, 2, 355–365.

Article  Google Scholar 

Almasan, A., & Ashkenazi, A. (2003). Apo2L/TRAIL: Apoptosis signaling, biology, and potential for cancer therapy. Cytokine and Growth Factor Reviews, 14, 337–348.

Article  CAS  PubMed  Google Scholar 

LeBlanc, H. N., & Ashkenazi, A. (2003). Apo2L/TRAIL and its death and decoy receptors. Cell Death and Differentiation, 10, 66–75.

Article  CAS  PubMed  Google Scholar 

Dugo, E. B., Yedjou, C. G., Stevens, J. J., & Tchounwou, P. B. (2017). Therapeutic potential of arsenic trioxide (ATO) in treatment of hepatocellular carcinoma: Role of oxidative stress in ATO-induced apoptosis. Annals of Clinical Pathology, 5, 1101.

PubMed  PubMed Central  Google Scholar 

Jambrovics, K., Poliska, S., Scholtz, B., Uray, I. P., & Balajthy, Z. (2023). ATO increases ROS production and apoptosis of cells by enhancing calpain-mediated degradation of the cancer survival protein TG2. International Journal of Molecular Sciences, 24, 10938.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hrgovic, I., Zöller, E., Doll, M., Hailemariam-Jahn, T., Jakob, T., Kaufmann, R., Meissner, M., & Kleemann, J. (2023). Arsenic trioxide decreases lymphangiogenesis by inducing apoptotic pathways and inhibition of important endothelial cell receptors. Current Issues in Molecular Biology, 46, 67–80.

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Z., Yi, J., Xie, B., Chen, J., Zhang, X., Wang, L., Wang, J., Hou, J., & Wei, H. (2022). Parkin, as a regulator, participates in arsenic trioxide-triggered mitophagy in HeLa cells. Current Issues in Molecular Biology, 44, 2759–2771.

Article  CAS  PubMed  Google Scholar 

Wen, A., Wang, J., Deng, Q., Ren, T., Yang, J., Wen, G., & Ou, D. (2024). The anti-inflammatory effect of arsenic trioxide effectively mitigates the pathogenic process in local chickens with avian leukosis. Poultry Science, 103, 104288.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, E. H., Yoon, M. J., Kim, S. U., Kwon, T. K., Sohn, S., & Choi, K. S. (2008). Arsenic trioxide sensitizes human glioma cells, but not normal astrocytes, to TRAIL-induced apoptosis via CCAAT/enhancer-binding protein homologous protein-dependent DR5 up-regulation. Cancer Research, 68, 266–275.

Article  CAS  PubMed  Google Scholar 

Szegezdi, E., Cahill, S., Meyer, M., O’Dwyer, M., & Samali, A. (2006). TRAIL sensitisation by arsenic trioxide is caspase-8 dependent and involves modulation of death receptor components and Akt. British Journal of Cancer, 94, 398–406.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif