Adeghate, E. (2011). Editorial medicinal chemistry of novel anti-diabetic drugs. The Open Medicinal Chemistry Journal, 5, 68–69.
Article PubMed PubMed Central Google Scholar
Khatik, G. L., Datusalia, A. K., Ahsan, W., Kaur, P., Vyas, M., Mittal, A., & Nayak, S. K. (2018). A Retrospect study on thiazole derivatives as the potential antidiabetic agents in drug discovery and developments. Current Drug Discovery Technologies, 15, 163–177. https://doi.org/10.2174/1570163814666170915134018.
Article CAS PubMed Google Scholar
Taha, M., Ismail, N. H., Jamil, W., Imran, S., Rahim, F., Kashif, S. M., & Zulkefeli, M. (2016). Synthesis of 2-(2-methoxyphenyl)-5-phenyl-1,3,4-oxadiazole derivatives and evaluation of their antiglycation potential. Medicinal Chemistry Research, 25, 225–234. https://doi.org/10.1007/s00044-015-1476-8.
Baynest, H. W. (2015). Classification, pathophysiology, diagnosis and management of diabetes mellitus. Journal of Diabetes and Metabolism, 06. https://doi.org/10.4172/2155-6156.1000541
Sundarram, A., & Murthy, T. P. K. (2014). α-amylase production and applications: A review. Journal of Applied and Environmental Microbiology, 2, 166–175. https://doi.org/10.12691/jaem-2-4-10.
Sales, P. M., Souza, P. M., Simeoni, L. A., & Silveira, D. (2012). α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. Journal of Pharmacy and Pharmaceutical Sciences, 15, 141–183. https://doi.org/10.18433/j35s3k.
Dai, B., Wu, Q., Zeng, C., Zhang, J., Cao, L., Xiao, Z., & Yang, M. (2016). The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. Journal of Ethnopharmacology, 192, 382–389. https://doi.org/10.1016/j.jep.2016.07.024.
Cheng, X., Huang, J., Li, H., Zhao, D., Liu, Z., Zhu, L., Zhang, Z., & Peng, W. (2024). Quercetin: A promising therapy for diabetic encephalopathy through inhibition of hippocampal ferroptosis. Phytomedicine, 126, 154887. https://doi.org/10.1016/j.phymed.2023.154887.
Article CAS PubMed Google Scholar
Wei, Y., Xu, S., Wu, Z., Zhang, M., Bao, M., & He, B. (2024). Exploring the causal relationships between type 2 diabetes and neurological disorders using a Mendelian randomization strategy. Medicine, 103, e40412. https://doi.org/10.1097/MD.0000000000040412.
Article CAS PubMed PubMed Central Google Scholar
He, K., Chen, R., Xu, S., Ding, Y., Wu, Z., Bao, M., He, B., & Li, S. (2024). Environmental endocrine disruptor-induced mitochondrial dysfunction: a potential mechanism underlying diabetes and its complications. Frontiers in Endocrinology, 15, 1422752. https://doi.org/10.3389/fendo.2024.1422752.
Article PubMed PubMed Central Google Scholar
Li, W., Liu, X., Liu, Z., Xing, Q., Liu, R., Wu, Q., Hu, Y., & Zhang, J. (2024). The signaling pathways of selected traditional Chinese medicine prescriptions and their metabolites in the treatment of diabetic cardiomyopathy: a review. Frontiers in Pharmacology, 15, 1416403. https://doi.org/10.3389/fphar.2024.1416403.
Article CAS PubMed PubMed Central Google Scholar
Liang, J., He, Y., Huang, C., Ji, F., Zhou, X., & Yin, Y. (2024). The regulation of selenoproteins in diabetes: A new way to treat diabetes. Current Pharmaceutical Design, 30, 1541–1547. https://doi.org/10.2174/0113816128302667240422110226.
Article CAS PubMed Google Scholar
Kandra, L. (2003). α-Amylases of medical and industrial importance. Journal of Molecular Structure: THEOCHEM, 666–667, 487–498. https://doi.org/10.1016/j.theochem.2003.08.073.
Das, S., Singh, S., Sharma, V., & Soni, M. L. (2011). Biotechnological applications of industrially important amylase enzyme. International Journal of Pharma and Bio Sciences, 2, 486–496.
Hamdan, I. I., Afifi, F., & Taha, M. O. (2004). In vitro alpha amylase inhibitory effect of some clinically-used drugs. Die Pharmazie, 59, 799–801.
Shahidpour, S., Panahi, F., Yousefi, R., Nourisefat, M., Nabipoor, M., & Khalafi-Nezhad, A. (2015). Design and synthesis of new antidiabetic α-glucosidase and α-amylase inhibitors based on pyrimidine-fused heterocycles. Medicinal Chemistry Research, 24, 3086–3096. https://doi.org/10.1007/s00044-015-1356-2.
Wickramaratne, M. N., Punchihewa, J. C., & Wickramaratne, D. B. M. (2016). In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complementary and Alternative Medicine, 16, 466. https://doi.org/10.1186/s12906-016-1452-y.
Article PubMed PubMed Central Google Scholar
Yamagishi, S., & Matsui, T. (2011). Nitric oxide, a janus-faced therapeutic target for diabetic microangiopathy—Friend or foe? Pharmacological Research, 64, 187–194. https://doi.org/10.1016/j.phrs.2011.05.009.
Article CAS PubMed Google Scholar
Khan, A. N., Khan, R. A., Ahmad, M., Mushtaq, N., & Khan, A. (2015). Role of antioxidant in oxidative stress and diabetes mellitus. Journal of Pharmacognosy and Phytochemistry, 3, 217–220.
Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40, 405–412. https://doi.org/10.2337/diab.40.4.405.
Article CAS PubMed Google Scholar
Arshad, T., Khan, K. M., Rasool, N., Salar, U., Hussain, S., Tahir, T., & Ismail, N. H. (2016). Syntheses, in vitro evaluation and molecular docking studies of 5-bromo-2-aryl benzimidazoles as α-glucosidase inhibitors. Medicinal Chemistry Research, 25, 2058–2069. https://doi.org/10.1007/s00044-016-1614-y.
Rafique, R., Khan, K. M., Arshia, Kanwal, Chigurupati, S., Wadood, A., & al-Rashida, M. (2020). Synthesis of new indazole based dual inhibitors of α-glucosidase and α-amylase enzymes, their in vitro, in silico and kinetics studies. Bioorganic Chemistry, 94, 103195. https://doi.org/10.1016/j.bioorg.2019.103195.
Article CAS PubMed Google Scholar
Salar, U., Khan, K. M., Chigurupati, S., Taha, M., Wadood, A., Vijayabalan, S., & Perveen, S. (2017). New hybrid hydrazinyl thiazole substituted chromones: as potential α-amylase inhibitors and radical (DPPH & ABTS) scavengers. Scientific Reports, 7, 1–17. https://doi.org/10.1038/s41598-017-17261-w.
Kruit, J. K., Brunham, L. R., Verchere, C. B., & Hayden, M. R. (2010). HDL and LDL cholesterol significantly influence beta-cell function in type 2 diabetes mellitus. Current Opinion in Lipidology, 21, 178–185. https://doi.org/10.1097/MOL.0b013e328339387b.
Article CAS PubMed Google Scholar
Crawford, R. S., Mudaliar, S. R., Henry, R. R., & Chait, A. (1999). Inhibition of LDL oxidation in vitro but not ex vivo by troglitazone. Diabetes, 48, 783–790. https://doi.org/10.2337/diabetes.48.4.783.
Article CAS PubMed Google Scholar
Gomes, M. N., Muratov, E. N., Pereira, M., Peixoto, J. C., Rosseto, L. P., Cravo, P. V. L., & Neves, B. J. (2017). Chalcone derivatives: Promising starting points for drug design. Molecules, 22, 1210. https://doi.org/10.3390/molecules22081210.
Article CAS PubMed PubMed Central Google Scholar
Aksöz, B. E., & Ertan, R. (2011). Chemical and structural properties of chalcones I. Fabad J Pharm Sci, 36, 223–242.
Nowakowska, Z. (2007). A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, 42, 125–137. https://doi.org/10.1016/j.ejmech.2006.09.019.
Article CAS PubMed Google Scholar
Kumar, D., Kumar, N. M., Akamatsu, K., Kusaka, E., Harada, H., & Ito, T. (2010). Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorganic and Medicinal Chemistry Letters, 20, 3916–3919. https://doi.org/10.1016/j.bmcl.2010.05.016.
Article CAS PubMed Google Scholar
Batovska, D., Parushev, S., Stamboliyska, B., Tsvetkova, I., Ninova, M., & Najdenski, H. (2009). Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. European Journal of Medicinal Chemistry, 44, 2211–2218. https://doi.org/10.1016/j.ejmech.2008.05.010.
Comments (0)