Development of Novel α-Amylase Inhibitors: Synthesis, Molecular Docking, and Biochemical Studies

Adeghate, E. (2011). Editorial medicinal chemistry of novel anti-diabetic drugs. The Open Medicinal Chemistry Journal, 5, 68–69.

Article  PubMed  PubMed Central  Google Scholar 

Khatik, G. L., Datusalia, A. K., Ahsan, W., Kaur, P., Vyas, M., Mittal, A., & Nayak, S. K. (2018). A Retrospect study on thiazole derivatives as the potential antidiabetic agents in drug discovery and developments. Current Drug Discovery Technologies, 15, 163–177. https://doi.org/10.2174/1570163814666170915134018.

Article  CAS  PubMed  Google Scholar 

Taha, M., Ismail, N. H., Jamil, W., Imran, S., Rahim, F., Kashif, S. M., & Zulkefeli, M. (2016). Synthesis of 2-(2-methoxyphenyl)-5-phenyl-1,3,4-oxadiazole derivatives and evaluation of their antiglycation potential. Medicinal Chemistry Research, 25, 225–234. https://doi.org/10.1007/s00044-015-1476-8.

Article  CAS  Google Scholar 

Baynest, H. W. (2015). Classification, pathophysiology, diagnosis and management of diabetes mellitus. Journal of Diabetes and Metabolism, 06. https://doi.org/10.4172/2155-6156.1000541

Sundarram, A., & Murthy, T. P. K. (2014). α-amylase production and applications: A review. Journal of Applied and Environmental Microbiology, 2, 166–175. https://doi.org/10.12691/jaem-2-4-10.

Article  Google Scholar 

Sales, P. M., Souza, P. M., Simeoni, L. A., & Silveira, D. (2012). α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. Journal of Pharmacy and Pharmaceutical Sciences, 15, 141–183. https://doi.org/10.18433/j35s3k.

Article  PubMed  Google Scholar 

Dai, B., Wu, Q., Zeng, C., Zhang, J., Cao, L., Xiao, Z., & Yang, M. (2016). The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. Journal of Ethnopharmacology, 192, 382–389. https://doi.org/10.1016/j.jep.2016.07.024.

Article  PubMed  Google Scholar 

Cheng, X., Huang, J., Li, H., Zhao, D., Liu, Z., Zhu, L., Zhang, Z., & Peng, W. (2024). Quercetin: A promising therapy for diabetic encephalopathy through inhibition of hippocampal ferroptosis. Phytomedicine, 126, 154887. https://doi.org/10.1016/j.phymed.2023.154887.

Article  CAS  PubMed  Google Scholar 

Wei, Y., Xu, S., Wu, Z., Zhang, M., Bao, M., & He, B. (2024). Exploring the causal relationships between type 2 diabetes and neurological disorders using a Mendelian randomization strategy. Medicine, 103, e40412. https://doi.org/10.1097/MD.0000000000040412.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, K., Chen, R., Xu, S., Ding, Y., Wu, Z., Bao, M., He, B., & Li, S. (2024). Environmental endocrine disruptor-induced mitochondrial dysfunction: a potential mechanism underlying diabetes and its complications. Frontiers in Endocrinology, 15, 1422752. https://doi.org/10.3389/fendo.2024.1422752.

Article  PubMed  PubMed Central  Google Scholar 

Li, W., Liu, X., Liu, Z., Xing, Q., Liu, R., Wu, Q., Hu, Y., & Zhang, J. (2024). The signaling pathways of selected traditional Chinese medicine prescriptions and their metabolites in the treatment of diabetic cardiomyopathy: a review. Frontiers in Pharmacology, 15, 1416403. https://doi.org/10.3389/fphar.2024.1416403.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang, J., He, Y., Huang, C., Ji, F., Zhou, X., & Yin, Y. (2024). The regulation of selenoproteins in diabetes: A new way to treat diabetes. Current Pharmaceutical Design, 30, 1541–1547. https://doi.org/10.2174/0113816128302667240422110226.

Article  CAS  PubMed  Google Scholar 

Kandra, L. (2003). α-Amylases of medical and industrial importance. Journal of Molecular Structure: THEOCHEM, 666–667, 487–498. https://doi.org/10.1016/j.theochem.2003.08.073.

Article  CAS  Google Scholar 

Das, S., Singh, S., Sharma, V., & Soni, M. L. (2011). Biotechnological applications of industrially important amylase enzyme. International Journal of Pharma and Bio Sciences, 2, 486–496.

CAS  Google Scholar 

Hamdan, I. I., Afifi, F., & Taha, M. O. (2004). In vitro alpha amylase inhibitory effect of some clinically-used drugs. Die Pharmazie, 59, 799–801.

CAS  PubMed  Google Scholar 

Shahidpour, S., Panahi, F., Yousefi, R., Nourisefat, M., Nabipoor, M., & Khalafi-Nezhad, A. (2015). Design and synthesis of new antidiabetic α-glucosidase and α-amylase inhibitors based on pyrimidine-fused heterocycles. Medicinal Chemistry Research, 24, 3086–3096. https://doi.org/10.1007/s00044-015-1356-2.

Article  CAS  Google Scholar 

Wickramaratne, M. N., Punchihewa, J. C., & Wickramaratne, D. B. M. (2016). In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complementary and Alternative Medicine, 16, 466. https://doi.org/10.1186/s12906-016-1452-y.

Article  PubMed  PubMed Central  Google Scholar 

Yamagishi, S., & Matsui, T. (2011). Nitric oxide, a janus-faced therapeutic target for diabetic microangiopathy—Friend or foe? Pharmacological Research, 64, 187–194. https://doi.org/10.1016/j.phrs.2011.05.009.

Article  CAS  PubMed  Google Scholar 

Khan, A. N., Khan, R. A., Ahmad, M., Mushtaq, N., & Khan, A. (2015). Role of antioxidant in oxidative stress and diabetes mellitus. Journal of Pharmacognosy and Phytochemistry, 3, 217–220.

Google Scholar 

Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40, 405–412. https://doi.org/10.2337/diab.40.4.405.

Article  CAS  PubMed  Google Scholar 

Arshad, T., Khan, K. M., Rasool, N., Salar, U., Hussain, S., Tahir, T., & Ismail, N. H. (2016). Syntheses, in vitro evaluation and molecular docking studies of 5-bromo-2-aryl benzimidazoles as α-glucosidase inhibitors. Medicinal Chemistry Research, 25, 2058–2069. https://doi.org/10.1007/s00044-016-1614-y.

Article  CAS  Google Scholar 

Rafique, R., Khan, K. M., Arshia, Kanwal, Chigurupati, S., Wadood, A., & al-Rashida, M. (2020). Synthesis of new indazole based dual inhibitors of α-glucosidase and α-amylase enzymes, their in vitro, in silico and kinetics studies. Bioorganic Chemistry, 94, 103195. https://doi.org/10.1016/j.bioorg.2019.103195.

Article  CAS  PubMed  Google Scholar 

Salar, U., Khan, K. M., Chigurupati, S., Taha, M., Wadood, A., Vijayabalan, S., & Perveen, S. (2017). New hybrid hydrazinyl thiazole substituted chromones: as potential α-amylase inhibitors and radical (DPPH & ABTS) scavengers. Scientific Reports, 7, 1–17. https://doi.org/10.1038/s41598-017-17261-w.

Article  CAS  Google Scholar 

Kruit, J. K., Brunham, L. R., Verchere, C. B., & Hayden, M. R. (2010). HDL and LDL cholesterol significantly influence beta-cell function in type 2 diabetes mellitus. Current Opinion in Lipidology, 21, 178–185. https://doi.org/10.1097/MOL.0b013e328339387b.

Article  CAS  PubMed  Google Scholar 

Crawford, R. S., Mudaliar, S. R., Henry, R. R., & Chait, A. (1999). Inhibition of LDL oxidation in vitro but not ex vivo by troglitazone. Diabetes, 48, 783–790. https://doi.org/10.2337/diabetes.48.4.783.

Article  CAS  PubMed  Google Scholar 

Gomes, M. N., Muratov, E. N., Pereira, M., Peixoto, J. C., Rosseto, L. P., Cravo, P. V. L., & Neves, B. J. (2017). Chalcone derivatives: Promising starting points for drug design. Molecules, 22, 1210. https://doi.org/10.3390/molecules22081210.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aksöz, B. E., & Ertan, R. (2011). Chemical and structural properties of chalcones I. Fabad J Pharm Sci, 36, 223–242.

Google Scholar 

Nowakowska, Z. (2007). A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, 42, 125–137. https://doi.org/10.1016/j.ejmech.2006.09.019.

Article  CAS  PubMed  Google Scholar 

Kumar, D., Kumar, N. M., Akamatsu, K., Kusaka, E., Harada, H., & Ito, T. (2010). Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorganic and Medicinal Chemistry Letters, 20, 3916–3919. https://doi.org/10.1016/j.bmcl.2010.05.016.

Article  CAS  PubMed  Google Scholar 

Batovska, D., Parushev, S., Stamboliyska, B., Tsvetkova, I., Ninova, M., & Najdenski, H. (2009). Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. European Journal of Medicinal Chemistry, 44, 2211–2218. https://doi.org/10.1016/j.ejmech.2008.05.010.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif