Computational Drug Repurposing Screening Targeting Profibrotic Cytokine in Acute Respiratory Distress Syndrome

Lazar, M., Sandulescu, M., Barbu, E. C., Chitu-Tisu, C. E., Andreescu, D. I., Anton, A. N., Erculescu, T. M., Petre, A. M., Duca, G. T., Simion, V., Padiu, I. F., Pacurar, C. G., Rosca, R., Simian, T. M., Oprea, C. A., & Ion, D. A. (2024). The role of cytokines and molecular pathways in lung fibrosis following SARS-CoV-2 infection: A physiopathologic (re)view. Biomedicines, 12, 639.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghonim, M. A., Boyd, D. F., Flerlage, T., & Thomas, P. G. (2023). Pulmonary inflammation and fibroblast immunoregulation: From bench to bedside. JCI Insight, 133, e170499.

CAS  Google Scholar 

Forel, J. M., Guervilly, C., Farnarier, C., Donati, S. Y., Hraiech, S., Persico, N., Allardet-Servent, J., Coiffard, B., Gainnier, M., Loundou, A., Sylvestre, A., Roch, A., Bourenne, J., & Papazian, L. (2018). Transforming growth factor-β1 in predicting early lung fibroproliferation in patients with acute respiratory distress syndrome. PLoS ONE, 13, e0206105.

Article  PubMed  PubMed Central  Google Scholar 

Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., & He, J. (2024). TGF-β signaling in health, disease, and therapeutics. Signal Transduction and Targeted Therapy, 9, 61.

Article  PubMed  PubMed Central  Google Scholar 

Sheppard, D. (2006). Transforming growth factor beta: A central modulator of pulmonary and airway inflammation and fibrosis. Proceedings of the American Thoracic Society, 3, 413–417.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frangogiannis, N. (2020). Transforming growth factor-β in tissue fibrosis. Journal of Experimental Medicine, 217, e20190103.

Article  PubMed  PubMed Central  Google Scholar 

Cabrera-Benitez, N. E., Laffey, J. G., Parotto, M., Spieth, P. M., Villar, J., Zhang, H., & Slutsky, A. S. (2014). Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: A significant contributor to poor outcome. Anesthesiology, 121, 189–198.

Article  PubMed  Google Scholar 

Huang, Q., Le, Y., Li, S., & Bian, Y. (2024). Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respiratory Research, 25, 30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arguinchona, L. M., Zagona-Prizio, C., Joyce, M. E., Chan, E. D., & Maloney, J. P. (2023). Microvascular significance of TGF-β axis activation in COVID-19. Frontiers in Cardiovascular Medicine, 9, 1054690.

Article  PubMed  PubMed Central  Google Scholar 

Sisto, M., Ribatti, D., & Lisi, S. (2021). Organ fibrosis and autoimmunity: The role of inflammation in TGFβ-dependent EMT. Biomolecules, 11, 310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michalski, J. E., Kurche, J. S., & Schwartz, D. A. (2022). From ARDS to pulmonary fibrosis: The next phase of the COVID-19 pandemic? Translational Research, 241, 13–24.

Article  CAS  PubMed  Google Scholar 

Shi, X., Young, C. D., Zhou, H., & Wang, X. (2020). Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules, 10, 1666.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akhurst, R. J. (2017). Targeting TGF-β signaling for therapeutic gain. Cold Spring Harbor Perspectives in Biology, 9, a022301.

Article  PubMed  PubMed Central  Google Scholar 

Kim, K. K., Sheppard, D., & Chapman, H. A. (2018). TGF-β1 signaling and tissue fibrosis. Cold Spring Harbor Perspectives in Biology, 10, a022293.

Article  PubMed  PubMed Central  Google Scholar 

Ramachandran, A., Vizán, P., Das, D., Chakravarty, P., Vogt, J., Rogers, K. W., Müller, P., Hinck, A. P., Sapkota, G. P., & Hill, C. S. (2018). TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. eLife, 7, e31756.

Article  PubMed  PubMed Central  Google Scholar 

Flanders, K. C. (2004). Smad3 as a mediator of the fibrotic response. International Journal of Experimental Pathology, 85, 47–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyazawa, K., Itoh, Y., Fu, H., & Miyazono, K. (2024). Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. Journal of Biological Chemistry, 300, 107256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walton, K. L., Johnson, K. E., & Harrison, C. A. (2017). Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Frontiers in Pharmacology, 8, 461.

Article  PubMed  PubMed Central  Google Scholar 

Wang, H. L., Wang, L., Zhao, C. Y., & Lan, H. Y. (2022). Role of TGF-beta signaling in beta cell proliferation and function in diabetes. Biomolecules, 12, 373.

Article  PubMed  PubMed Central  Google Scholar 

Peng, D., Fu, M., Wang, M., Wei, Y., & Wei, X. (2022). Targeting TGF-β signal transduction for fibrosis and cancer therapy. Molecular Cancer, 21, 104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, B. G., Malek, E., Choi, S. H., Ignatz-Hoover, J. J., & Driscoll, J. J. (2021). Novel therapies emerging in oncology to target the TGF-β pathway. Journal of Hematology and Oncology, 14, 55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holmgaard, R. B., Schaer, D. A., Li, Y., Castaneda, S. P., Murphy, M. Y., Xu, X., Inigo, I., Dobkin, J., Manro, J. R., Iversen, P. W., Surguladze, D., Hall, G. E., Novosiadly, R. D., Benhadji, K. A., Plowman, G. D., Kalos, M., & Driscoll, K. E. (2018). Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. Journal for Immunotherapy of Cancer, 6, 47.

Article  PubMed  PubMed Central  Google Scholar 

Choi, S. H., Myers, J., Tomchuck, S., Bonner, M., Eid, S., Kingsley, D., VanHeyst, K., Kim, S. J., Kim, B. G., & Huang, A. Y. (2023). Oral TGF-βR1 inhibitor Vactosertib promotes osteosarcoma regression by targeting tumor proliferation and enhancing anti-tumor immunity. Research Square. Preprint retrieved from rs.3.rs-2709282. https://pubmed.ncbi.nlm.nih.gov/37066414/.

Pennison, M., & Pasche, B. (2007). Targeting transforming growth factor-beta signaling. Current Opinion in Oncology, 19, 579–585.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tie, Y., Tang, F., Peng, D., Zhang, Y., & Shi, H. (2022). TGF-beta signal transduction: Biology, function and therapy for diseases. Molecular Biomedicine, 3, 45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gómez-Gil, V. (2021). Therapeutic implications of TGFβ in cancer treatment: A systematic review. Cancers, 13, 379.

Article  PubMed  PubMed Central  Google Scholar 

Tie, Y., Tang, F., & Peng, D., et al. (2022). TGF-beta signal transduction: A pharmacological target in the pathogenesis and therapeutics of fibrosis and cancer. Pharmacological Research, 175, 104558.

Hong, E., Park, S., Ooshima, A., Hong, C. P., Park, J., Heo, J. S., Lee, S., An, H., Kang, J. M., Park, S. H., Park, J. O., & Kim, S. J. (2020). Inhibition of TGF-β signaling in combination with nal-IRI plus 5-Fluorouracil/Leucovorin suppresses invasion and prolongs survival in pancreatic tumor mouse models. Scientific Reports, 10, 2935.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelley, R. K., Gane, E., Assenat, E., Siebler, J., Galle, P. R., Merle, P., Hourmand, I. O., Cleverly, A., Zhao, Y., Gueorguieva, I., Lahn, M., Faivre, S., Benhadji, K. A., & Giannelli, G. (2019). A phase 2 study of galunisertib (TGF-β1 receptor type I inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma. Clinical and Translational Gastroenterology, 10, e00056.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malek, E., Rana, P. S., Swamydas, M., Daunov, M., Miyagi, M., Murphy, E., Ignatz-Hoover, J. J., Metheny, L., Seong Jin, K., & Driscoll, J. J. (2023). Vactosertib, a novel TGF-β1 type I receptor kinase inhibitor, improves T-cell fitness: A single-arm, phase 1b trial in relapsed/refractory multiple myeloma. Research Square. Preprint retrieved from rs.3.rs-3112163. https://pubmed.ncbi.nlm.nih.gov/37503043/.

Reza, R., Morshed, N., Samdani, M. N., & Reza, M. S. (2023). Pharmacophore mapping approach to find anti-cancer phytochemicals with metformin-like activities against transforming growth factor (TGF)-beta receptor I kinase: An in sili

Comments (0)

No login
gif