Lazar, M., Sandulescu, M., Barbu, E. C., Chitu-Tisu, C. E., Andreescu, D. I., Anton, A. N., Erculescu, T. M., Petre, A. M., Duca, G. T., Simion, V., Padiu, I. F., Pacurar, C. G., Rosca, R., Simian, T. M., Oprea, C. A., & Ion, D. A. (2024). The role of cytokines and molecular pathways in lung fibrosis following SARS-CoV-2 infection: A physiopathologic (re)view. Biomedicines, 12, 639.
Article CAS PubMed PubMed Central Google Scholar
Ghonim, M. A., Boyd, D. F., Flerlage, T., & Thomas, P. G. (2023). Pulmonary inflammation and fibroblast immunoregulation: From bench to bedside. JCI Insight, 133, e170499.
Forel, J. M., Guervilly, C., Farnarier, C., Donati, S. Y., Hraiech, S., Persico, N., Allardet-Servent, J., Coiffard, B., Gainnier, M., Loundou, A., Sylvestre, A., Roch, A., Bourenne, J., & Papazian, L. (2018). Transforming growth factor-β1 in predicting early lung fibroproliferation in patients with acute respiratory distress syndrome. PLoS ONE, 13, e0206105.
Article PubMed PubMed Central Google Scholar
Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., & He, J. (2024). TGF-β signaling in health, disease, and therapeutics. Signal Transduction and Targeted Therapy, 9, 61.
Article PubMed PubMed Central Google Scholar
Sheppard, D. (2006). Transforming growth factor beta: A central modulator of pulmonary and airway inflammation and fibrosis. Proceedings of the American Thoracic Society, 3, 413–417.
Article CAS PubMed PubMed Central Google Scholar
Frangogiannis, N. (2020). Transforming growth factor-β in tissue fibrosis. Journal of Experimental Medicine, 217, e20190103.
Article PubMed PubMed Central Google Scholar
Cabrera-Benitez, N. E., Laffey, J. G., Parotto, M., Spieth, P. M., Villar, J., Zhang, H., & Slutsky, A. S. (2014). Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: A significant contributor to poor outcome. Anesthesiology, 121, 189–198.
Huang, Q., Le, Y., Li, S., & Bian, Y. (2024). Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respiratory Research, 25, 30.
Article CAS PubMed PubMed Central Google Scholar
Arguinchona, L. M., Zagona-Prizio, C., Joyce, M. E., Chan, E. D., & Maloney, J. P. (2023). Microvascular significance of TGF-β axis activation in COVID-19. Frontiers in Cardiovascular Medicine, 9, 1054690.
Article PubMed PubMed Central Google Scholar
Sisto, M., Ribatti, D., & Lisi, S. (2021). Organ fibrosis and autoimmunity: The role of inflammation in TGFβ-dependent EMT. Biomolecules, 11, 310.
Article CAS PubMed PubMed Central Google Scholar
Michalski, J. E., Kurche, J. S., & Schwartz, D. A. (2022). From ARDS to pulmonary fibrosis: The next phase of the COVID-19 pandemic? Translational Research, 241, 13–24.
Article CAS PubMed Google Scholar
Shi, X., Young, C. D., Zhou, H., & Wang, X. (2020). Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules, 10, 1666.
Article CAS PubMed PubMed Central Google Scholar
Akhurst, R. J. (2017). Targeting TGF-β signaling for therapeutic gain. Cold Spring Harbor Perspectives in Biology, 9, a022301.
Article PubMed PubMed Central Google Scholar
Kim, K. K., Sheppard, D., & Chapman, H. A. (2018). TGF-β1 signaling and tissue fibrosis. Cold Spring Harbor Perspectives in Biology, 10, a022293.
Article PubMed PubMed Central Google Scholar
Ramachandran, A., Vizán, P., Das, D., Chakravarty, P., Vogt, J., Rogers, K. W., Müller, P., Hinck, A. P., Sapkota, G. P., & Hill, C. S. (2018). TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. eLife, 7, e31756.
Article PubMed PubMed Central Google Scholar
Flanders, K. C. (2004). Smad3 as a mediator of the fibrotic response. International Journal of Experimental Pathology, 85, 47–64.
Article CAS PubMed PubMed Central Google Scholar
Miyazawa, K., Itoh, Y., Fu, H., & Miyazono, K. (2024). Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. Journal of Biological Chemistry, 300, 107256.
Article CAS PubMed PubMed Central Google Scholar
Walton, K. L., Johnson, K. E., & Harrison, C. A. (2017). Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Frontiers in Pharmacology, 8, 461.
Article PubMed PubMed Central Google Scholar
Wang, H. L., Wang, L., Zhao, C. Y., & Lan, H. Y. (2022). Role of TGF-beta signaling in beta cell proliferation and function in diabetes. Biomolecules, 12, 373.
Article PubMed PubMed Central Google Scholar
Peng, D., Fu, M., Wang, M., Wei, Y., & Wei, X. (2022). Targeting TGF-β signal transduction for fibrosis and cancer therapy. Molecular Cancer, 21, 104.
Article CAS PubMed PubMed Central Google Scholar
Kim, B. G., Malek, E., Choi, S. H., Ignatz-Hoover, J. J., & Driscoll, J. J. (2021). Novel therapies emerging in oncology to target the TGF-β pathway. Journal of Hematology and Oncology, 14, 55.
Article CAS PubMed PubMed Central Google Scholar
Holmgaard, R. B., Schaer, D. A., Li, Y., Castaneda, S. P., Murphy, M. Y., Xu, X., Inigo, I., Dobkin, J., Manro, J. R., Iversen, P. W., Surguladze, D., Hall, G. E., Novosiadly, R. D., Benhadji, K. A., Plowman, G. D., Kalos, M., & Driscoll, K. E. (2018). Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. Journal for Immunotherapy of Cancer, 6, 47.
Article PubMed PubMed Central Google Scholar
Choi, S. H., Myers, J., Tomchuck, S., Bonner, M., Eid, S., Kingsley, D., VanHeyst, K., Kim, S. J., Kim, B. G., & Huang, A. Y. (2023). Oral TGF-βR1 inhibitor Vactosertib promotes osteosarcoma regression by targeting tumor proliferation and enhancing anti-tumor immunity. Research Square. Preprint retrieved from rs.3.rs-2709282. https://pubmed.ncbi.nlm.nih.gov/37066414/.
Pennison, M., & Pasche, B. (2007). Targeting transforming growth factor-beta signaling. Current Opinion in Oncology, 19, 579–585.
Article CAS PubMed PubMed Central Google Scholar
Tie, Y., Tang, F., Peng, D., Zhang, Y., & Shi, H. (2022). TGF-beta signal transduction: Biology, function and therapy for diseases. Molecular Biomedicine, 3, 45.
Article CAS PubMed PubMed Central Google Scholar
Gómez-Gil, V. (2021). Therapeutic implications of TGFβ in cancer treatment: A systematic review. Cancers, 13, 379.
Article PubMed PubMed Central Google Scholar
Tie, Y., Tang, F., & Peng, D., et al. (2022). TGF-beta signal transduction: A pharmacological target in the pathogenesis and therapeutics of fibrosis and cancer. Pharmacological Research, 175, 104558.
Hong, E., Park, S., Ooshima, A., Hong, C. P., Park, J., Heo, J. S., Lee, S., An, H., Kang, J. M., Park, S. H., Park, J. O., & Kim, S. J. (2020). Inhibition of TGF-β signaling in combination with nal-IRI plus 5-Fluorouracil/Leucovorin suppresses invasion and prolongs survival in pancreatic tumor mouse models. Scientific Reports, 10, 2935.
Article CAS PubMed PubMed Central Google Scholar
Kelley, R. K., Gane, E., Assenat, E., Siebler, J., Galle, P. R., Merle, P., Hourmand, I. O., Cleverly, A., Zhao, Y., Gueorguieva, I., Lahn, M., Faivre, S., Benhadji, K. A., & Giannelli, G. (2019). A phase 2 study of galunisertib (TGF-β1 receptor type I inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma. Clinical and Translational Gastroenterology, 10, e00056.
Article CAS PubMed PubMed Central Google Scholar
Malek, E., Rana, P. S., Swamydas, M., Daunov, M., Miyagi, M., Murphy, E., Ignatz-Hoover, J. J., Metheny, L., Seong Jin, K., & Driscoll, J. J. (2023). Vactosertib, a novel TGF-β1 type I receptor kinase inhibitor, improves T-cell fitness: A single-arm, phase 1b trial in relapsed/refractory multiple myeloma. Research Square. Preprint retrieved from rs.3.rs-3112163. https://pubmed.ncbi.nlm.nih.gov/37503043/.
Reza, R., Morshed, N., Samdani, M. N., & Reza, M. S. (2023). Pharmacophore mapping approach to find anti-cancer phytochemicals with metformin-like activities against transforming growth factor (TGF)-beta receptor I kinase: An in sili
Comments (0)