Rogler, G., Singh, A., Kavanaugh, A., & Rubin, D. T. (2021). Extraintestinal manifestations of inflammatory bowel disease: Current concepts, treatment, and implications for disease management. Gastroenterology, 161, 1118–1132.
Article CAS PubMed Google Scholar
Lima, S. F., Gogokhia, L., Viladomiu, M., Chou, L., Putzel, G., Jin, W. B., Pires, S., Guo, C. J., Gerardin, Y., Crawford, C. V., Jacob, V., Scherl, E., Brown, S. E., Hambor, J., & Longman, R. S. (2022). Transferable immunoglobulin A-coated odoribacter splanchnicus in responders to fecal microbiota transplantation for ulcerative colitis limits colonic inflammation. Gastroenterology, 162, 166–178.
Article CAS PubMed Google Scholar
Chang, J. T. (2020). Pathophysiology of inflammatory bowel diseases. The New England Journal of Medicine, 383, 2652–2664.
Article CAS PubMed Google Scholar
Zou, Y., Ghaderpour, A., Munkhbileg, B., Seo, S. U., & Seong, S. Y. (2023). Taurodeoxycholate ameliorates DSS-induced colitis in mice. International Immunopharmacology, 122, 110628.
Article CAS PubMed Google Scholar
Dong, L., Xie, J., Wang, Y., Jiang, H., Chen, K., Li, D., Wang, J., Liu, Y., He, J., Zhou, J., Zhang, L., Lu, X., Zou, X., Wang, X. Y., Wang, Q., Chen, Z., & Zuo, D. (2022). Mannose ameliorates experimental colitis by protecting intestinal barrier integrity. Nature Communications, 13, 4804.
Article CAS PubMed PubMed Central Google Scholar
Pabla, B. S., & Schwartz, D. A. (2020). Assessing severity of disease in patients with ulcerative colitis. Gastroenterology Clinics of North America, 49, 671–688.
Article PubMed PubMed Central Google Scholar
Wangchuk, P., Yeshi, K., & Loukas, A. (2024). Ulcerative colitis: Clinical biomarkers, therapeutic targets, and emerging treatments. Trends in pharmacological sciences, 45, 892–903.
Article CAS PubMed Google Scholar
Zhao, B., Xia, B., Li, X., Zhang, L., Liu, X., Shi, R., Kou, R., Liu, Z., & Liu, X. (2020). Sesamol supplementation attenuates DSS-induced colitis via mediating gut barrier integrity, inflammatory responses, and reshaping gut microbiome. Journal of Agricultural and Food Chemistry, 68, 10697–10708.
Article CAS PubMed Google Scholar
Ordás, I., Eckmann, L., Talamini, M., Baumgart, D. C., & Sandborn, W. J. (2012). Ulcerative colitis. Lancet (London, England), 380, 1606–1619.
Sinha, S. R., Haileselassie, Y., Nguyen, L. P., Tropini, C., Wang, M., Becker, L. S., Sim, D., Jarr, K., Spear, E. T., Singh, G., Namkoong, H., Bittinger, K., Fischbach, M. A., Sonnenburg, J. L., & Habtezion, A. (2020). Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell host & microbe, 27, 659–670.e655.
Hedin, C., van der Gast, C. J., Rogers, G. B., Cuthbertson, L., McCartney, S., Stagg, A. J., Lindsay, J. O., & Whelan, K. (2016). Siblings of patients with Crohn’s disease exhibit a biologically relevant dysbiosis in mucosal microbial metacommunities. Gut, 65, 944–953.
Article CAS PubMed Google Scholar
Braun, J., & Wei, B. (2007). Body traffic: Ecology, genetics, and immunity in inflammatory bowel disease. Annual Review of Pathology, 2, 401–429.
Article CAS PubMed Google Scholar
Huang, L., Zheng, J., Sun, G., Yang, H., Sun, X., Yao, X., Lin, A., & Liu, H. (2022). 5-Aminosalicylic acid ameliorates dextran sulfate sodium-induced colitis in mice by modulating gut microbiota and bile acid metabolism. Cellular and Molecular Life Sciences : CMLS, 79, 460.
Article CAS PubMed PubMed Central Google Scholar
Hirten, R. P., & Sands, B. E. (2021). New therapeutics for ulcerative colitis. Annual review of Medicine, 72, 199–213.
Article CAS PubMed Google Scholar
Gong, H., Gan, X., Qin, B., Chen, J., Zhao, Y., Qiu, B., Chen, W., Yu, Y., Shi, S., Li, T., Liu, D., Li, B., Wang, S., & Wang, H. (2024). Structural characteristics of steamed polygonatum cyrtonema polysaccharide and its bioactivity on colitis via improving the intestinal barrier and modifying the gut microbiota. Carbohydrate Polymers, 327, 121669.
Article CAS PubMed Google Scholar
Lu, H., Shen, M., Chen, Y., Yu, Q., Chen, T., & Xie, J. (2023). Alleviative effects of natural plant polysaccharides against DSS-induced ulcerative colitis via inhibiting inflammation and modulating gut microbiota. Food Research International (Ottawa, Ont), 167, 112630.
Article CAS PubMed Google Scholar
Jiang, S., Xu, H., Zhao, C., Zhong, F., & Li, D. (2023). Oyster polysaccharides relieve DSS-induced colitis via anti-inflammatory and maintaining the physiological hypoxia. International Journal of Biological Macromolecules, 238, 124150.
Article CAS PubMed Google Scholar
Liu, S., Hong, L., Zhang, S., Tian, Y., Wang, Y., Zhao, D., Lv, J., Zhuang, J., Xu, H., & Xia, G. (2024). Sporisorium reilianum polysaccharides improve DSS-induced ulcerative colitis by regulating intestinal barrier function and metabolites. International Journal of Biological Macromolecules, 265, 130863.
Article CAS PubMed Google Scholar
Tan, Z., Zhang, Q., Zhao, R., Huang, T., Tian, Y., & Lin, Y. (2023). A comparative study on the effects of different sources of carboxymethyl poria polysaccharides on the repair of DSS-induced colitis in mice. International Journal of Molecular Sciences, 24, 9034.
Article CAS PubMed PubMed Central Google Scholar
Wang, J., Zhang, C., Guo, C., & Li, X. (2019). Chitosan ameliorates DSS-induced ulcerative colitis mice by enhancing intestinal barrier function and improving microflora. International Journal of Molecular Sciences, 20, 5751.
Article CAS PubMed PubMed Central Google Scholar
Li, Z. Y., Lin, L. H., Liang, H. J., Li, Y. Q., Zhao, F. Q., Sun, T. Y., Liu, Z. Y., Zhu, J. Y., Gu, F., Xu, J. N., Hao, Q. Y., Zhou, D. S., & Zhai, H. H. (2023). Lycium barbarum polysaccharide alleviates DSS-induced chronic ulcerative colitis by restoring intestinal barrier function and modulating gut microbiota. Annals of Medicine, 55, 2290213.
Article PubMed PubMed Central Google Scholar
Ouyang, Q., Li, X., Liang, Y., & Liu, R. (2024). Sea buckthorn polysaccharide ameliorates colitis. Nutrients, 16, 1280.
Article CAS PubMed PubMed Central Google Scholar
Ding, Y., Brand, E., Wang, W., & Zhao, Z. (2022). Licorice: Resources, applications in ancient and modern times. Journal of Ethnopharmacology, 298, 115594.
Article CAS PubMed Google Scholar
Arora, A., Sharma, N., & Kakkar, D. (2023). Natural polysaccharides for ulcerative colitis: A general overview. Asian Pacific Journal of Tropical Biomedicine, 13, 185–194.
Sharma, K., Kumar, M., Waghmare, R., Suhag, R., Gupta, O. P., Lorenzo, J. M., Prakash, S., Radha, Rais, N., Sampathrajan, V., Thappa, C., Anitha, T., Sayed, A., Abdel-Wahab, B. A., Senapathy, M., Pandiselvam, R., Dey, A., Dhumal, S., Amarowicz, R., & Kennedy, J. F. (2022). Moringa (Moringa oleifera Lam.) polysaccharides: Extraction, characterization, bioactivities, and industrial application. International Journal of Biological Macromolecules, 209, 763–778.
Article CAS PubMed Google Scholar
Santos, M. C., Koetz, M., Mendez, A. S. L., & Henriques, A. T. (2020). Ultrasound-assisted extraction optimization and validation of ultra-performance liquid chromatographic method for the quantification of miquelianin in Cuphea glutinosa leaves. Talanta, 216, 120988.
Article CAS PubMed Google Scholar
Jing, M., Wang, Y., & Xu, L. (2019). Andrographolide derivative AL-1 ameliorates dextran sodium sulfate-induced murine colitis by inhibiting NF-κB and MAPK signaling pathways. Oxidative Medicine and Cellular Longevity, 2019, 6138723.
Article PubMed PubMed Central Google Scholar
Lv, Q., Wang, K., Qiao, S., Yang, L., Xin, Y., Dai, Y., & Wei, Z. (2018). Norisoboldine, a natural AhR agonist, promotes Treg differentiation and attenuates colitis via targeting glycolysis and subsequent NAD(+)/SIRT1/SUV39H1/H3K9me3 signaling pathway. Cell Death & Disease, 9, 258.
Liu, C., Wang, R., Jiao, X., Zhang, J., Zhang, C., & Wang, Z. (2023). Oxysophocarpine suppresses TRAF6 level to ameliorate oxidative stress and inflammatory factors secretion in mice with dextran sulphate sodium (DSS) induced-ulcerative colitis. Microbial Pathogenesis, 182, 106244.
Comments (0)