Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol
Wigner P, Grębowski R, Bijak M et al (2021) The molecular aspect of nephrolithiasis development. https://doi.org/10.3390/cells10081926. Cells
Scales CD, Tasian GE, Schwaderer AL et al (2016) Urinary stone disease: advancing knowledge, patient care, and population health. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.13251215
Article PubMed PubMed Central Google Scholar
Tundo G, Vollstedt A, Meeks W, Pais V (2021) Beyond prevalence: annual cumulative incidence of kidney stones in the united States. J Urol. https://doi.org/10.1097/JU.0000000000001629
Sakhaee K (2018) Unraveling the mechanisms of obesity-induced hyperoxaluria. Kidney Int 93:1038–1040. https://doi.org/10.1016/j.kint.2018.01.012
Article CAS PubMed PubMed Central Google Scholar
Carbone A, Al Salhi Y, Tasca A et al (2018) Obesity and kidney stone disease: a systematic review. Minerva Urol E Nefrol. https://doi.org/10.23736/S0393-2249.18.03113-2. 70:
Li, Chou YH, Li CC et al (2009) Association of body mass index and urine pH in patients with urolithiasis. Urol Res 37. https://doi.org/10.1007/s00240-009-0194-4
Taylor EN, Curhan GC (2008) Determinants of 24-hour urinary oxalate excretion. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.01410308
Article PubMed PubMed Central Google Scholar
Lemann J, Pleuss JA, Worcester EM et al (1996) Urinary oxalate excretion increases with body size and decreases with increasing dietary calcium intake among healthy adults. Kidney Int. https://doi.org/10.1038/ki.1996.27
Kleinman JG (2007) Bariatric surgery, hyperoxaluria, and nephrolithiasis: A plea for close postoperative management of risk factors. Kidney Int 72:8–10. https://doi.org/10.1038/sj.ki.5002284
Article CAS PubMed Google Scholar
Scales CD, Curtis LH, Norris RD et al (2007) Changing gender prevalence of stone disease. J Urol. https://doi.org/10.1016/j.juro.2006.10.069
Bashir M, Meddings J, Alshaikh A et al (2019) Enhanced Gastrointestinal passive paracellular permeability contributes to the obesity-associated hyperoxaluria. Am J Physiol - Gastrointest Liver Physiol. https://doi.org/10.1152/ajpgi.00266.2018
Das UN (2001) Is obesity an inflammatory condition? Nutrition. https://doi.org/10.1016/S0899-9007(01)00672-4
Duparc T, Naslain D, Colom A et al (2011) Jejunum inflammation in obese and diabetic mice impairs enteric glucose detection and modifies nitric oxide release in the hypothalamus. Antioxid Redox Signal. https://doi.org/10.1089/ars.2010.3330
Amin R, Asplin J, Jung D et al (2018) Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity-associated hyperoxaluria. Kidney Int 93. https://doi.org/10.1016/j.kint.2017.11.011
Gene Expression Omnibus Database (2024) https://www.ncbi.nlm.nih.gov/geo. Accessed 12 Jan 2024
Joshi S, Wang W, Khan SR (2017) Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: inflammatory changes are mainly associated with crystal deposition. PLoS ONE. https://doi.org/10.1371/journal.pone.0185009
Article PubMed PubMed Central Google Scholar
Plaza-Diáz J, Robles-Sánchez C, Abadiá-Molina F et al (2017) Adamdec1, Ednrb and Ptgs1/Cox1, inflammation genes upregulated in the intestinal mucosa of obese rats, are downregulated by three probiotic strains. Sci Rep. https://doi.org/10.1038/s41598-017-02203-3
Article PubMed PubMed Central Google Scholar
Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-9-559
Article PubMed PubMed Central Google Scholar
Ravasz E, Somera AL, Mongru DA et al (2002) Hierarchical organization of modularity in metabolic networks. Science. https://doi.org/10.1126/science.1073374. (80-)
Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv007
Article PubMed PubMed Central Google Scholar
Tang D, Chen M, Huang X et al (2023) SRplot: A free online platform for data visualization and graphing. PLoS ONE. https://doi.org/10.1371/journal.pone.0294236
Article PubMed PubMed Central Google Scholar
Sherman BT, Hao M, Qiu J et al (2022) DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. https://doi.org/10.1093/nar/gkac194
Article PubMed PubMed Central Google Scholar
Chin CH, Chen SH, Wu HH et al (2014) CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. https://doi.org/10.1186/1752-0509-8-S4-S11
Article PubMed PubMed Central Google Scholar
Yuvashree M, Gokulakannan R, Ganesh RN, Viswanathan P (2019) Enhanced therapeutic potency of nanoemulsified Garlic oil blend towards renal abnormalities in Pre-diabetic rats. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-018-2919-8
Mehra Y, Rajesh NG, Viswanathan P (2022) Analysis and characterization of Lactobacillus paragasseri and Lacticaseibacillus paracasei: two probiotic bacteria that can degrade intestinal oxalate in hyperoxaluric rats. https://doi.org/10.1007/s12602-022-09958-w. Probiotics Antimicrob Proteins
Kumar V, Sekar M, Sarkar P et al (2021) Dynamics of HOX gene expression and regulation in adipocyte development. Gene 768. https://doi.org/10.1016/j.gene.2020.145308
Ye Z, Wu C, Xiong Y et al (2023) Obesity, metabolic dysfunction, and risk of kidney stone disease: a National cross-sectional study. Aging Male. https://doi.org/10.1080/13685538.2023.2195932
Tian L, Liu Y, Xu X et al (2022) Lactiplantibacillus plantarum J-15 reduced calcium oxalate kidney stones by regulating intestinal microbiota, metabolism, and inflammation in rats. FASEB J. https://doi.org/10.1096/fj.202101972RR
Nishizawa K (2016) Low-grade endotoxemia, diet, and gut microbiota– an emphasis on the early events leading to dysfunction of the intestinal epithelial barrier. Biomed Res Clin Pract. https://doi.org/10.15761/brcp.1000110
Cheng N, Liang Y, Du X, Ye RD (2018) Serum amyloid A promotes LPS clearance and suppresses LPS -induced inflammation and tissue injury. EMBO Rep. https://doi.org/10.15252/embr.201745517
Article PubMed PubMed Central Google Scholar
Sommer F, Bäckhed F (2016) Know your neighbor: microbiota and host epithelial cells interact locally to control intestinal function and physiology. https://doi.org/10.1002/bies.201500151. BioEssays
Ding S, Chi MM, Scull BP et al (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE. https://doi.org/10.1371/journal.pone.0012191
Article PubMed PubMed Central Google Scholar
Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0605374104
Article PubMed PubMed Central Google Scholar
Hoshino K, Takeuchi O, Kawai T et al (1999) Cutting edge: Toll-Like receptor 4 (TLR4)-Deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. https://doi.org/10.4049/jimmunol.162.7.3749
Poltorak A, He X, Smirnova I et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. https://doi.org/10.1126/science.282.5396.2085. (80-)
Wu J, Niu P, Zhao Y et al (2019) Impact of miR-223-3p and miR-2909 on inflammatory factors IL-6, IL-1ß, and TNF-α, and the TLR4/TLR2/NF-κB/STAT3 signaling pathway induced by lipopolysaccharide in human adipose stem cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0212063
Comments (0)