Abd Elghani F, Safory H, Hamza H et al (2022) SIAH proteins regulate the degradation and intra-mitochondrial aggregation of PINK1: implications for mitochondrial pathology in Parkinson’s disease. Aging Cell 21:e13731. https://doi.org/10.1111/acel.13731
Article CAS PubMed PubMed Central Google Scholar
Bhandari A, Sharma AK, Singh H et al (2022) Aging-related changes in metabolic indicators in female rats and their management with Tinospora cordifolia. Biogerontology 23:363–380. https://doi.org/10.1007/s10522-022-09962-1
Article CAS PubMed Google Scholar
Birla H, Rai SN, Singh SS et al (2019) Tinospora cordifolia suppresses neuroinflammation in parkinsonian mouse model. NeuroMolecular Med 21:42–53. https://doi.org/10.1007/s12017-018-08521-7
Article CAS PubMed Google Scholar
Birla H, Keswani C, Singh SS et al (2021) Unraveling the neuroprotective effect of Tinospora cordifolia in a parkinsonian mouse model through the proteomics approach. ACS Chem Neurosci 12:4319–4335. https://doi.org/10.1021/acschemneuro.1c00481
Article CAS PubMed Google Scholar
Bouvier E, Brouillard F, Molet J et al (2017) Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol Psychiatry 22:1701–1713. https://doi.org/10.1038/mp.2016.144
Article CAS PubMed Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Article CAS PubMed Google Scholar
Chakkittukandiyil A, Sajini DV, Karuppaiah A, Selvaraj D (2022) The principal molecular mechanisms behind the activation of Keap1/Nrf2/ARE pathway leading to neuroprotective action in Parkinson’s disease. Neurochem Int 156:105325. https://doi.org/10.1016/j.neuint.2022.105325
Article CAS PubMed Google Scholar
Damri O, Natour S, Asslih S, Agam G (2023) Does treatment with autophagy-enhancers and/or ROS-scavengers alleviate behavioral and neurochemical consequences of low-dose rotenone-induced mild mitochondrial dysfunction in mice? Mol Psychiatry 1–12. https://doi.org/10.1038/s41380-023-01955-x
Dilnashin H, Birla H, Keswani C et al (2023) Neuroprotective effects of Tinospora cordifolia via reducing the oxidative stress and mitochondrial dysfunction against Rotenone-Induced PD mice. ACS Chem Neurosci 14:3077–3087. https://doi.org/10.1021/acschemneuro.3c00216
Article CAS PubMed Google Scholar
El Basuini MF, Teiba II, Shahin SA et al (2022) Dietary Guduchi (Tinospora cordifolia) enhanced the growth performance, antioxidative capacity, immune response and ameliorated stress-related markers induced by hypoxia stress in nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 120:337–344. https://doi.org/10.1016/j.fsi.2021.12.002
Article CAS PubMed Google Scholar
Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46. https://doi.org/10.1016/j.biopha.2003.11.004
Article CAS PubMed Google Scholar
Feng S-T, Wang Z-Z, Yuan Y-H et al (2021) Update on the association between alpha-synuclein and tau with mitochondrial dysfunction: implications for Parkinson’s disease. Eur J Neurosci 53:2946–2959. https://doi.org/10.1111/ejn.14699
Fields M, Marcuzzi A, Gonelli A et al (2023) Mitochondria-targeted antioxidants, an innovative class of antioxidant compounds for neurodegenerative diseases: perspectives and limitations. Int J Mol Sci 24:3739. https://doi.org/10.3390/ijms24043739
Article CAS PubMed PubMed Central Google Scholar
George M, Tharakan M, Culberson J et al (2022) Role of Nrf2 in aging, Alzheimer’s and other neurodegenerative diseases. Ageing Res Rev 82:101756. https://doi.org/10.1016/j.arr.2022.101756
Article CAS PubMed Google Scholar
Guo W, Feng Y, Zhang B et al (2024) Based on virtual screening and simulation exploring the mechanism of plant-derived compounds with PINK1 to postherpetic neuralgia. Mol Neurobiol 61(11):9184–9203. https://doi.org/10.1007/s12035-024-04098-4
Gureev AP, Popov VN (2019) Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochem Res 44:2273–2279. https://doi.org/10.1007/s11064-018-02711-2
Article CAS PubMed Google Scholar
Han R, Liu Y, Li S et al (2022) PINK1-PRKN mediated mitophagy: differences between in vitro and in vivo models. Autophagy 0:1–10. https://doi.org/10.1080/15548627.2022.2139080
Hussien HT, Tag HM, Ahmed E et al (2022) THE antioxidant and hepatoprotective activities of the ethanolic extract of tinospora cordifolia leaves: in vitro and in vivo studies. Egypt J Zool 0. https://doi.org/10.21608/ejz.2022.139640.1083
Ibrahim A, Ipinloju N, Muhammad SA et al (2023) Discovery of small molecule PARKIN activator as therapeutics for PD: an in-silico repurposing approach. Appl Biochem Biotechnol 195(10):5980–6002. https://doi.org/10.1007/s12010-023-04376-2
Jain AD, Potteti H, Richardson BG et al (2015) Probing the structural requirements of non-electrophilic naphthalene-based Nrf2 activators. Eur J Med Chem 103:252–268. https://doi.org/10.1016/j.ejmech.2015.08.049
Article CAS PubMed PubMed Central Google Scholar
Kim BH, Koh HC (2023) The role of CK2 in the regulation of mitochondrial autophagy induced by rotenone. Toxicol Lett. https://doi.org/10.1016/j.toxlet.2023.05.002
Kosaraju J, Chinni S, Roy PD et al (2014) Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced parkinsonism. Indian J Pharmacol 46:176–180. https://doi.org/10.4103/0253-7613.129312
Article PubMed PubMed Central Google Scholar
Lacarrière-Keïta C, Nassari S, Jean S (2022) Autophagy in cell fate decisions: knowledge gained from drosophila. Genome 65:573–584. https://doi.org/10.1139/gen-2022-0069
Article CAS PubMed Google Scholar
Leduc-Gaudet J-P, Hussain SN, Gouspillou G (2022) Parkin: a potential target to promote healthy ageing. J Physiol 600:3405–3421. https://doi.org/10.1113/JP282567
Article CAS PubMed Google Scholar
Leem Y-H, Park J-S, Park J-E et al (2022) Neurogenic effects of rotarod walking exercise in subventricular zone, subgranular zone, and substantia nigra in MPTP-induced Parkinson’s disease mice. Sci Rep 12:10544. https://doi.org/10.1038/s41598-022-14823-5
Article CAS PubMed PubMed Central Google Scholar
Lesage S, Drouet V, Majounie E et al (2016) Loss of VPS13C function in autosomal-recessive parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-Dependent mitophagy. Am J Hum Genet 98:500–513. https://doi.org/10.1016/j.ajhg.2016.01.014
Article CAS PubMed PubMed Central Google Scholar
Li M, Huang W, Jie F et al (2019) Discovery of Keap1– Nrf2 small– molecule inhibitors from phytochemicals based on molecular docking. Food Chem Toxicol 133:110758. https://doi.org/10.1016/j.fct.2019.110758
Article CAS PubMed PubMed Central Google Scholar
Li W, Jiang W-S, Su Y-R et al (2023) PINK1/Parkin-mediated mitophagy inhibits osteoblast apoptosis induced by advanced oxidation protein products. Cell Death Dis 14:1–12. https://doi.org/10.1038/s41419-023-05595-5
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Yan J, Sun C et al (2018) Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway. Redox Biol 17:143–157. https://doi.org/10.1016/j.redox.2018.04.012
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Wang Y, Bi Y et al (2023) Emerging role of mitophagy in heart failure: from molecular mechanism to targeted therapy. Cell Cycle 22:906–918. https://doi.org/10.1080/15384101.2023.2167949
Comments (0)