TCE-mediated neuroprotection against rotenone-induced dopaminergic neuronal death in PD mice: insights into the Nrf-2/PINK1/Parkin-mitophagy pathway

Abd Elghani F, Safory H, Hamza H et al (2022) SIAH proteins regulate the degradation and intra-mitochondrial aggregation of PINK1: implications for mitochondrial pathology in Parkinson’s disease. Aging Cell 21:e13731. https://doi.org/10.1111/acel.13731

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhandari A, Sharma AK, Singh H et al (2022) Aging-related changes in metabolic indicators in female rats and their management with Tinospora cordifolia. Biogerontology 23:363–380. https://doi.org/10.1007/s10522-022-09962-1

Article  CAS  PubMed  Google Scholar 

Birla H, Rai SN, Singh SS et al (2019) Tinospora cordifolia suppresses neuroinflammation in parkinsonian mouse model. NeuroMolecular Med 21:42–53. https://doi.org/10.1007/s12017-018-08521-7

Article  CAS  PubMed  Google Scholar 

Birla H, Keswani C, Singh SS et al (2021) Unraveling the neuroprotective effect of Tinospora cordifolia in a parkinsonian mouse model through the proteomics approach. ACS Chem Neurosci 12:4319–4335. https://doi.org/10.1021/acschemneuro.1c00481

Article  CAS  PubMed  Google Scholar 

Bouvier E, Brouillard F, Molet J et al (2017) Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol Psychiatry 22:1701–1713. https://doi.org/10.1038/mp.2016.144

Article  CAS  PubMed  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Article  CAS  PubMed  Google Scholar 

Chakkittukandiyil A, Sajini DV, Karuppaiah A, Selvaraj D (2022) The principal molecular mechanisms behind the activation of Keap1/Nrf2/ARE pathway leading to neuroprotective action in Parkinson’s disease. Neurochem Int 156:105325. https://doi.org/10.1016/j.neuint.2022.105325

Article  CAS  PubMed  Google Scholar 

Damri O, Natour S, Asslih S, Agam G (2023) Does treatment with autophagy-enhancers and/or ROS-scavengers alleviate behavioral and neurochemical consequences of low-dose rotenone-induced mild mitochondrial dysfunction in mice? Mol Psychiatry 1–12. https://doi.org/10.1038/s41380-023-01955-x

Dilnashin H, Birla H, Keswani C et al (2023) Neuroprotective effects of Tinospora cordifolia via reducing the oxidative stress and mitochondrial dysfunction against Rotenone-Induced PD mice. ACS Chem Neurosci 14:3077–3087. https://doi.org/10.1021/acschemneuro.3c00216

Article  CAS  PubMed  Google Scholar 

El Basuini MF, Teiba II, Shahin SA et al (2022) Dietary Guduchi (Tinospora cordifolia) enhanced the growth performance, antioxidative capacity, immune response and ameliorated stress-related markers induced by hypoxia stress in nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 120:337–344. https://doi.org/10.1016/j.fsi.2021.12.002

Article  CAS  PubMed  Google Scholar 

Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46. https://doi.org/10.1016/j.biopha.2003.11.004

Article  CAS  PubMed  Google Scholar 

Feng S-T, Wang Z-Z, Yuan Y-H et al (2021) Update on the association between alpha-synuclein and tau with mitochondrial dysfunction: implications for Parkinson’s disease. Eur J Neurosci 53:2946–2959. https://doi.org/10.1111/ejn.14699

Article  PubMed  Google Scholar 

Fields M, Marcuzzi A, Gonelli A et al (2023) Mitochondria-targeted antioxidants, an innovative class of antioxidant compounds for neurodegenerative diseases: perspectives and limitations. Int J Mol Sci 24:3739. https://doi.org/10.3390/ijms24043739

Article  CAS  PubMed  PubMed Central  Google Scholar 

George M, Tharakan M, Culberson J et al (2022) Role of Nrf2 in aging, Alzheimer’s and other neurodegenerative diseases. Ageing Res Rev 82:101756. https://doi.org/10.1016/j.arr.2022.101756

Article  CAS  PubMed  Google Scholar 

Guo W, Feng Y, Zhang B et al (2024) Based on virtual screening and simulation exploring the mechanism of plant-derived compounds with PINK1 to postherpetic neuralgia. Mol Neurobiol 61(11):9184–9203. https://doi.org/10.1007/s12035-024-04098-4

Gureev AP, Popov VN (2019) Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochem Res 44:2273–2279. https://doi.org/10.1007/s11064-018-02711-2

Article  CAS  PubMed  Google Scholar 

Han R, Liu Y, Li S et al (2022) PINK1-PRKN mediated mitophagy: differences between in vitro and in vivo models. Autophagy 0:1–10. https://doi.org/10.1080/15548627.2022.2139080

Article  CAS  Google Scholar 

Hussien HT, Tag HM, Ahmed E et al (2022) THE antioxidant and hepatoprotective activities of the ethanolic extract of tinospora cordifolia leaves: in vitro and in vivo studies. Egypt J Zool 0. https://doi.org/10.21608/ejz.2022.139640.1083

Ibrahim A, Ipinloju N, Muhammad SA et al (2023) Discovery of small molecule PARKIN activator as therapeutics for PD: an in-silico repurposing approach. Appl Biochem Biotechnol 195(10):5980–6002. https://doi.org/10.1007/s12010-023-04376-2

Jain AD, Potteti H, Richardson BG et al (2015) Probing the structural requirements of non-electrophilic naphthalene-based Nrf2 activators. Eur J Med Chem 103:252–268. https://doi.org/10.1016/j.ejmech.2015.08.049

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim BH, Koh HC (2023) The role of CK2 in the regulation of mitochondrial autophagy induced by rotenone. Toxicol Lett. https://doi.org/10.1016/j.toxlet.2023.05.002

Article  PubMed  Google Scholar 

Kosaraju J, Chinni S, Roy PD et al (2014) Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced parkinsonism. Indian J Pharmacol 46:176–180. https://doi.org/10.4103/0253-7613.129312

Article  PubMed  PubMed Central  Google Scholar 

Lacarrière-Keïta C, Nassari S, Jean S (2022) Autophagy in cell fate decisions: knowledge gained from drosophila. Genome 65:573–584. https://doi.org/10.1139/gen-2022-0069

Article  CAS  PubMed  Google Scholar 

Leduc-Gaudet J-P, Hussain SN, Gouspillou G (2022) Parkin: a potential target to promote healthy ageing. J Physiol 600:3405–3421. https://doi.org/10.1113/JP282567

Article  CAS  PubMed  Google Scholar 

Leem Y-H, Park J-S, Park J-E et al (2022) Neurogenic effects of rotarod walking exercise in subventricular zone, subgranular zone, and substantia nigra in MPTP-induced Parkinson’s disease mice. Sci Rep 12:10544. https://doi.org/10.1038/s41598-022-14823-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lesage S, Drouet V, Majounie E et al (2016) Loss of VPS13C function in autosomal-recessive parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-Dependent mitophagy. Am J Hum Genet 98:500–513. https://doi.org/10.1016/j.ajhg.2016.01.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Huang W, Jie F et al (2019) Discovery of Keap1– Nrf2 small– molecule inhibitors from phytochemicals based on molecular docking. Food Chem Toxicol 133:110758. https://doi.org/10.1016/j.fct.2019.110758

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Jiang W-S, Su Y-R et al (2023) PINK1/Parkin-mediated mitophagy inhibits osteoblast apoptosis induced by advanced oxidation protein products. Cell Death Dis 14:1–12. https://doi.org/10.1038/s41419-023-05595-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Yan J, Sun C et al (2018) Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway. Redox Biol 17:143–157. https://doi.org/10.1016/j.redox.2018.04.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Wang Y, Bi Y et al (2023) Emerging role of mitophagy in heart failure: from molecular mechanism to targeted therapy. Cell Cycle 22:906–918. https://doi.org/10.1080/15384101.2023.2167949

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif