Potential therapeutic effects of curcumin, with or without L-DOPA, on motor and cognitive functions and hippocampal changes in rotenone-treated rats

Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, Weintraub D (2021) Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 7(1):47. https://doi.org/10.1038/s41572-021-00280-3

Article  PubMed  Google Scholar 

Ablat N, Liu R, Ablimit M, Sun Y, Xu F, Zhao X, Han H, Pu X (2022) Preventive effects of a standardized flavonoid extract of safflower in rotenone-induced Parkinson’s disease rat model. Neuropharmacology 217:109209. https://doi.org/10.1016/j.neuropharm.2022.109209

Article  PubMed  CAS  Google Scholar 

Adami R, Bottai D (2022) Curcumin and neurological diseases. Nutr Neurosci 25(3):441–461. https://doi.org/10.1080/1028415X.2020.1760531

Article  PubMed  CAS  Google Scholar 

Adamowicz DH, Roy S, Salmon DP, Galasko DR, Hansen LA, Masliah E, Gage FH (2017) Hippocampal α-Synuclein in Dementia with Lewy Bodies Contributes to Memory Impairment and Is Consistent with Spread of Pathology. J Neurosci 37(7):1675–1684. https://doi.org/10.1523/JNEUROSCI.3047-16.2016

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aggarwal ML, Chacko KM, Kuruvilla BT (2016) Systematic and comprehensive investigation of the toxicity of curcuminoidessential oil complex: A bioavailable turmeric formulation. Mol Med Rep 13(1):592–604. https://doi.org/10.3892/mmr.2015.4579

Article  PubMed  CAS  Google Scholar 

Aggleton JP, Nelson AJD, O’Mara SM (2022) Time to retire the serial Papez circuit: Implications for space, memory, and attention. Neurosci Biobehav Rev 140:104813. https://doi.org/10.1016/j.neubiorev.2022.104813

Article  PubMed  PubMed Central  Google Scholar 

Alabi AO, Ajayi AM, Ben-Azu B, Bakre AG, Umukoro S (2019) Methyl jasmonate abrogates rotenone-induced parkinsonian-like symptoms through inhibition of oxidative stress, release of pro-inflammatory cytokines, and down-regulation of immnopositive cells of NF-κB and α-synuclein expressions in mice. Neurotoxicology 74:172–183. https://doi.org/10.1016/j.neuro.2019.07.003

Article  PubMed  CAS  Google Scholar 

Alam M, Schmidt WJ (2004) L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats. Behav Brain Res 153(2):439–446. https://doi.org/10.1016/j.bbr.2003.12.021

Article  PubMed  CAS  Google Scholar 

Alzoubi KH, Mokhemer E, Abuirmeileh AN (2018) Beneficial effect of etazolate on depression-like behavior and, learning, and memory impairment in a model of Parkinson’s disease. Behav Brain Res 350:109–115. https://doi.org/10.1016/j.bbr.2018.05.004

Article  PubMed  CAS  Google Scholar 

Baj T, Seth R (2018) Role of Curcumin in Regulation of TNF-α Mediated Brain Inflammatory Responses. Recent Pat Inflamm Allergy Drug Discov 12(1):69–77. https://doi.org/10.2174/1872213X12666180703163824

Article  PubMed  CAS  Google Scholar 

Bekris S, Antoniou K, Daskas S, Papadopoulou-Daifoti Z (2005) Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains. Behav Brain Res 161(1):45–59. https://doi.org/10.1016/j.bbr.2005.01.005

Article  PubMed  CAS  Google Scholar 

Belloso-Iguerategui A, Zamarbide M, Merino-Galan L, Rodríguez-Chinchilla T, Gago B, Santamaria E, Fernández-Irigoyen J, Cotman CW, Prieto GA, Quiroga-Varela A, Rodríguez-Oroz MC (2023) Hippocampal synaptic failure is an early event in experimental parkinsonism with subtle cognitive deficit. Brain 146(12):4949–4963. https://doi.org/10.1093/brain/awad227

Article  PubMed  PubMed Central  Google Scholar 

Belviranlı M, Okudan N (2019) Voluntary, involuntary and forced exercises almost equally reverse behavioral impairment by regulating hippocampal neurotrophic factors and oxidative stress in experimental Alzheimer’s disease model. Behav Brain Res 364:245–255. https://doi.org/10.1016/j.bbr.2019.02.030

Article  PubMed  CAS  Google Scholar 

Ben Youssef S, Brisson G, Doucet-Beaupré H, Castonguay AM, Gora C, Amri M, Lévesque M (2021) Neuroprotective benefits of grape seed and skin extract in a mouse model of Parkinson’s disease. Nutr Neurosci 24(3):197–211. https://doi.org/10.1080/1028415X.2019.1616435

Article  PubMed  CAS  Google Scholar 

Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, Lund S, Na HM, Taylor G, Bence NF, Kopito R, Seo BB, Yagi T, Yagi A, Klinefelter G, Cookson MR, Greenamyre JT (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 22(2):404–420. https://doi.org/10.1016/j.nbd.2005.12.003

Article  PubMed  CAS  Google Scholar 

Burgos-Morón E, Calderón-Montaño JM, Salvador J, Robles A, López-Lázaro M (2010) The dark side of curcumin. Int J Cancer 126(7):1771–1775. https://doi.org/10.1002/ijc.24967

Article  PubMed  CAS  Google Scholar 

Cai B, Zhong L, Wang Q, Xu W, Li X, Chen T (2023) Curcumin alleviates 1-methyl- 4-phenyl- 1,2,3,6-tetrahydropyridine- induced Parkinson’s disease in mice via modulating gut microbiota and short-chain fatty acids. Front Pharmacol 14:1198335. https://doi.org/10.3389/fphar.2023.1198335

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34(2):279–290. https://doi.org/10.1016/j.nbd.2009.01.016

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen L, Deltheil T, Turle-Lorenzo N, Liberge M, Rosier C, Watabe I, Sreng L, Amalric M, Mourre C (2014) SK channel blockade reverses cognitive and motor deficits induced by nigrostriatal dopamine lesions in rats. Int J Neuropsychopharmacol 17(8):1295–1306. https://doi.org/10.1017/S1461145714000236

Article  PubMed  CAS  Google Scholar 

Cohen H, Matar MA, Joseph Z (2013) Animal models of post-traumatic stress disorder. Curr Protoc Neurosci. Chap. 9:Unit 9.45 https://doi.org/10.1002/0471142301.ns0945s64

Cui Q, Li X, Zhu H (2016) Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol Med Rep 13(2):1381–1388. https://doi.org/10.3892/mmr.2015.4657

Article  PubMed  CAS  Google Scholar 

Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Badalyan SA, Khalaji N, Sarkisian VH (2017) Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: in vivo electrophysiological and behavioral study. Metab Brain Dis 32(6):1791–1803. https://doi.org/10.1007/s11011-017-0060-y

Article  PubMed  CAS  Google Scholar 

Darbinyan LV, Simonyan KV, Hambardzumyan LE, Manukyan LP, Badalyan SH, Sarkisian VH (2022) Protective effect of curcumin against rotenone-induced substantia nigra pars compacta neuronal dysfunction. Metab Brain Dis 37(4):1111–1118. https://doi.org/10.1007/s11011-022-00941-6

Article  PubMed  CAS  Google Scholar 

Darbinyan LV, Simonyan KV, Hambardzumyan LE, Simonyan MA, Simonyan RM, Manukyan LP (2023) Membrane-stabilizing and protective effects of curcumin in a rotenone-induced rat model of Parkinson disease. Metab Brain Dis 38(7):2457–2464. https://doi.org/10.1007/s11011-023-01237-z

Article  PubMed  CAS  Google Scholar 

Darios F, Corti O, Lücking CB, Hampe C, Muriel MP, Abbas N, Gu WJ, Hirsch EC, Rooney T, Ruberg M, Brice A (2003) Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 12(5):517–526. https://doi.org/10.1093/hmg/ddg044

Article  PubMed  CAS  Google Scholar 

Dernie F (2020) Mitophagy in Parkinson’s disease: From pathogenesis to treatment target. Neurochem Int 138:104756. https://doi.org/10.1016/j.neuint.2020.104756

Article  PubMed  CAS  Google Scholar 

Dodel RC, Du Y, Bales KR, Ling Z, Carvey PM, Paul SM (1999) Caspase-3-like proteases and 6-hydroxydopamine induced neuronal cell death. Brain Res Mol Brain Res 64(1):141–148. https://doi.org/10.1016/s0169-328x(98)00318-0

Article  PubMed  CAS 

Comments (0)

No login
gif