Neuroprotective effects of ghrelin in cuprizone-induced rat model of multiple sclerosis

Adamo A, Paez P, Cabrera OE, Wolfson M, Franco P, Pasquini J, Soto E (2006) Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin. Exp Neurol 198:519–529. https://doi.org/10.1016/j.expneurol.2005.12.027

Article  CAS  PubMed  Google Scholar 

Bizoń A, Chojdak-Łukasiewicz J, Budrewicz S, Pokryszko-Dragan A, Piwowar A (2023) Exploring the Relationship between Antioxidant Enzymes, Oxidative Stress Markers, and Clinical Profile in Relapsing–Remitting Multiple Sclerosis. Antioxidants 12:1638. https://doi.org/10.3390/antiox12081638

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Article  CAS  PubMed  Google Scholar 

Brück W (2007) New insights into the pathology of multiple sclerosis: towards a unified concept? J Neurol 254:I3-I9. https://doi.org/10.1007/s00415-007-1002-0

Cantero-Fortiz Y, Boada M (2024) The role of inflammation in neurological disorders: a brief overview of multiple sclerosis, Alzheimer’s, and Parkinson’s disease’. Front Neurol 15:1439125. https://doi.org/10.3389/fneur.2024.1439125

Article  PubMed  PubMed Central  Google Scholar 

Carriel V, Campos A, Alaminos M, Raimondo S, Geuna S (2017) Staining methods for normal and regenerative myelin in the nervous system. Histochem single molecules: methods protocols 207–218. https://doi.org/10.1007/978-1-4939-6788-9_15

Das UN (2012) Is multiple sclerosis a proresolution deficiency disorder? Nutrition 28:951–958. https://doi.org/10.1016/j.nut.2011.12.016

Article  CAS  PubMed  Google Scholar 

Dash UC, Bhol NK, Swain SK, Samal RR, Nayak PK, Raina V, Panda SK, Kerry RG, Duttaroy AK, Jena AB (2024) Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm Sinica B. https://doi.org/10.1016/j.apsb.2024.10.004

Distéfano-Gagné F, Bitarafan S, Lacroix S, Gosselin D (2023) Roles and regulation of microglia activity in multiple sclerosis: insights from animal models. Nat Rev Neurosci 24:397–415. https://doi.org/10.1038/s41583-023-00709-6

Article  CAS  PubMed  Google Scholar 

Dorababu A (2025) Experimentation of Heterocycles (2013-22) as Potent Pharmacophores in Drug Design of Multiple Sclerosis. Drug Dev Res 86:e70059. https://doi.org/10.1002/ddr.70059

Article  CAS  PubMed  Google Scholar 

Dutra MRH, Feliciano RDS, Jacinto KR, Gouveia TLF, Brigidio E, Serra AJ, Morris M, Naffah-Mazzacoratti MDG, Silva JA (2018) Protective role of UCP2 in oxidative stress and apoptosis during the silent phase of an experimental model of epilepsy induced by pilocarpine. Oxidative medicine and cellular longevity 2018. https://doi.org/10.1155/2018/6736721

Dymecka J, Gerymski R, Tataruch R, Bidzan M (2021) Fatigue, Physical disability and self-efficacy as predictors of the acceptance of illness and health-related quality of life in patients with multiple sclerosis. Int J Environ Res Public Health 18:13237. https://doi.org/10.3390/ijerph182413237

Article  PubMed  PubMed Central  Google Scholar 

El-Sayed SA, Fouad GI, Rizk MZ, Beherei HH, Mabrouk M (2024) Comparative neuroprotective potential of nanoformulated and free resveratrol against cuprizone-induced demyelination in rats. Mol Neurobiol 1–16. https://doi.org/10.1007/s12035-024-04415-x

Ergul Erkec O, Acikgoz E, Huyut Z, Akyol ME, Ozyurt EO, Keskin S (2024a) Ghrelin ameliorates neuronal damage, oxidative stress, inflammatory parameters, and GFAP expression in traumatic brain injury. Brain Injury 38:514–523. https://doi.org/10.1080/02699052.2024.2324012

Article  PubMed  Google Scholar 

Ergul Erkec O, Yunusoglu O, Huyut Z (2024b) Evaluation of repeated ghrelin administration on seizures, oxidative stress and neurochemical parameters in pentyleneterazole induced kindling in rats. Int J Neurosci 134:420–428. https://doi.org/10.1080/00207454.2022.2107516

Article  CAS  PubMed  Google Scholar 

Erkec OE, Algul S, Kara M (2018) Evaluation of ghrelin, nesfatin-1 and irisin levels of serum and brain after acute or chronic pentylenetetrazole administrations in rats using sodium valproate. Neurol Res 40:923–929. https://doi.org/10.1080/01616412.2018.1503992

Article  CAS  Google Scholar 

Eslami M, Mirabi A, Baghbanian M, Rafiei A (2003) The Role of Interleukin-6 as an Indicator of Multiple Sclerosis Progression From Relapse Remitting to Secondary Progressive Status. Res Mol Med. 2020;8(1): 1–8. https://doi.org/10.32598/rmm.8.1.1

Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128. https://doi.org/10.1016/0891-5849(91)90192-6

Article  CAS  PubMed  Google Scholar 

Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, Rocca MA (2018) Multiple sclerosis. Nat Reviews Disease Primers 4. https://doi.org/10.1038/s41572-018-0041-4

Friesen E, Hari K, Sheft M, Thiessen JD, Martin M (2024) Magnetic resonance metrics for identification of cuprizone-induced demyelination in the mouse model of neurodegeneration: A review. Magn Reson Mater Phys Biol Med 37:765–790. https://doi.org/10.1007/s10334-024-01160-z

Article  CAS  Google Scholar 

Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189. https://doi.org/10.1093/brain/awp070

Article  PubMed  PubMed Central  Google Scholar 

Gharagozloo M, Mace JW, Calabresi PA (2022) Animal models to investigate the effects of inflammation on remyelination in multiple sclerosis. Front Mol Neurosci 15:995477. https://doi.org/10.3389/fnmol.2022.995477

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghonimi NA, Elsharkawi KA, Khyal DS, Abdelghani AA (2021) Serum malondialdehyde as a lipid peroxidation marker in multiple sclerosis patients and its relation to disease characteristics. Multiple Scler Relat Disorders 51:102941. https://doi.org/10.1016/j.msard.2021.102941

Article  CAS  Google Scholar 

Goel R, Chaudhary R (2020) Effect of daidzein on Parkinson disease induced by reserpine in rats. Brazilian J Pharm Sci 56:e18388. https://doi.org/10.1590/s2175-97902019000318388

Article  CAS  Google Scholar 

Gonsette R (2008) Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci 274:48–53. https://doi.org/10.1016/j.jns.2008.06.029

Article  CAS  PubMed  Google Scholar 

Guerrero BL, Sicotte NL (2020) Microglia in multiple sclerosis: friend or foe? Front Immunol 11:517391. https://doi.org/10.3389/fimmu.2020.00374

Article  CAS  Google Scholar 

Hashem M, Shafqat Q, Wu Y, Rho JM, Dunn JF (2022) Abnormal oxidative metabolism in the cuprizone mouse model of demyelination: An in vivo NIRS-MRI study. NeuroImage 250:118935. https://doi.org/10.1016/j.neuroimage.2022.118935

Article  CAS  PubMed  Google Scholar 

Hollen C, Neilson LE, Barajas RF Jr, Greenhouse I, Spain RI (2023) Oxidative stress in multiple sclerosis—Emerging imaging techniques. Front Neurol 13:1025659. https://doi.org/10.3389/fneur.2022.1025659

Article  PubMed  PubMed Central  Google Scholar 

Huang W-X, Huang P, Link H, Hillert J (1999) Cytokine analysis in multiple sclerosis by competitive RT-PCR: a decreased expression of IL-10 and an increased expression of TNF-α in chronic progression. Multiple Scler J 5:342–348. https://doi.org/10.1177/13524585990050

Article  CAS  Google Scholar 

Huang J, Liu W, Doycheva DM, Gamdzyk M, Lu W, Tang J, Zhang JH (2019) Ghrelin attenuates oxidative stress and neuronal apoptosis via GHSR-1alpha/AMPK/Sirt1/PGC-1alpha/UCP2 pathway in a rat model of neonatal HIE. Free Radic Biol Med 141:322–337. https://doi.org/10.1016/j.freeradbiomed.2019.07.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiao Q, Du X, Li Y, Gong B, Shi L, Tang T, Jiang H (2017) The neurological effects of ghrelin in brain diseases: beyond metabolic functions. Neurosci Biobehavioral Reviews 73:98–111. https://doi.org/10.1016/j.neubiorev.2016.12.010

Article  CAS  Google Scholar 

Kojima M, Hosoda H, Yukari D, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660. https://doi.org/10.1038/45230

Article  CAS  PubMed  Google Scholar 

Lee S, Kim Y, Li E, Park S (2012) Ghrelin protects spinal cord motoneurons against chronic glutamate excitotoxicity by inhibiting microglial activation. Korean J Physiol Pharmacol 16:43–48. https://doi.org/10.4196/kjpp.2012.16.1.43

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang H, Zhou X, Zhang J, Xu W, Liu Y, Wang X, Hu Y, Xu R, Li X (2024) The therapeutic potential of Apigenin in amyotrophic lateral sclerosis through ALDH1A2/Nrf2/ARE signaling. Mol Med 30:206.

Comments (0)

No login
gif