Neuroprotective effects of Saxagliptin in traumatic brain injury: ameliorating oxidative stress, neuroinflammation, and apoptosis

Abdul-Muneer PM, Chandra N, Haorah J (2015) Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 51(3):966–979. https://doi.org/10.1007/s12035-014-8752-3

Article  CAS  PubMed  Google Scholar 

Akamatsu Y, Hanafy KA (2020) Cell death and recovery in traumatic brain injury. Neurotherapeutics 17(2):446–456. https://doi.org/10.1007/s13311-020-00840-7

Article  PubMed  PubMed Central  Google Scholar 

Ali SA, Datusalia AK (2024) Protective effects of Tinospora cordifolia Miers extract against hepatic and neurobehavioral deficits in thioacetamide-induced hepatic encephalopathy in rats via modulating hyperammonemia and glial cell activation. J Ethnopharmacol 323117700. https://doi.org/10.1016/j.jep.2023.117700

Bader M, Li Y, Tweedie D, Shlobin NA, Bernstein A, Rubovitch V, Tovar YRL, B, DiMarchi RD, Hoffer BJ, Greig NH, Pick CG (2019) Neuroprotective effects and treatment potential of incretin mimetics in a murine model of mild traumatic brain injury. Front Cell Dev Biol 7356. https://doi.org/10.3389/fcell.2019.00356

Boyko M, Kuts R, Gruenbaum BF, Tsenter P, Grinshpun J, Frank D, Zvenigorodsky V, Melamed I, Brotfain E, Zlotnik A (2019) An alternative model of Laser-Induced stroke in the motor cortex of rats. Biol Proced Online 219. https://doi.org/10.1186/s12575-019-0097-x

Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S (2015) Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab 4(10):718–731. https://doi.org/10.1016/j.molmet.2015.07.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Correia AC, Monteiro AR, Silva R, Moreira JN, Sousa Lobo JM, Silva AC (2022) Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Adv Drug Deliv Rev 189114485. https://doi.org/10.1016/j.addr.2022.114485

Dhuria SV, Hanson LR, Frey WH 2nd (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99(4):1654–1673. https://doi.org/10.1002/jps.21924

Diz-Chaves Y, Mastoor Z, Spuch C, Gonzalez-Matias LC, Mallo F (2022) Anti-Inflammatory effects of GLP-1 receptor activation in the brain in neurodegenerative diseases. Int J Mol Sci 23(17). https://doi.org/10.3390/ijms23179583

Doganyigit Z, Erbakan K, Akyuz E, Polat AK, Arulsamy A, Shaikh MF (2022) The role of neuroinflammatory mediators in the pathogenesis of traumatic brain injury: a narrative review. ACS Chem Neurosci 13(13):1835–1848. https://doi.org/10.1021/acschemneuro.2c00196

Article  CAS  PubMed  Google Scholar 

Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211(1):67–77. https://doi.org/10.1016/0006-8993(81)90067-6

Article  CAS  PubMed  Google Scholar 

Fesharaki-Zadeh A (2022) Oxidative stress in traumatic brain injury. Int J Mol Sci 23(21). https://doi.org/10.3390/ijms232113000

Gairola S, Ram C, Syed AM, Doye P, Kulhari U, Mugale MN, Murty US, Sahu BD (2021) Nootkatone confers antifibrotic effect by regulating the TGF-beta/Smad signaling pathway in mouse model of unilateral ureteral obstruction. Eur J Pharmacol 910174479. https://doi.org/10.1016/j.ejphar.2021.174479

Glotfelty EJ, Delgado T, Tovar YRLB, Luo Y, Hoffer B, Olson L, Karlsson T, Mattson MP, Harvey B, Tweedie D, Li Y, Greig NH (2019) Incretin mimetics as rational candidates for the treatment of traumatic brain injury. ACS Pharmacol Transl Sci 2(2):66–91. https://doi.org/10.1021/acsptsci.9b00003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haarbauer-Krupa J, Pugh MJ, Prager EM, Harmon N, Wolfe J, Yaffe K (2021) Epidemiology of chronic effects of traumatic brain injury. J Neurotrauma 38(23):3235–3247. https://doi.org/10.1089/neu.2021.0062

Article  PubMed  Google Scholar 

Hakiminia B, Alikiaii B, Khorvash F, Mousavi S (2022) Oxidative stress and mitochondrial dysfunction following traumatic brain injury: from mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 36(4):612–662. https://doi.org/10.1111/fcp.12767

Article  CAS  PubMed  Google Scholar 

Heath LM, Kidwai MR, Colella B, Monette G, Tselichtchev P, Tomaszczyk JC, Green RE (2023) Predictors and functional outcomes associated with longitudinal trajectories of anxiety and depression from 2 to >/=36 months after moderate to severe traumatic brain injury. J Neurotrauma 40(21–22):2311–2320. https://doi.org/10.1089/neu.2023.0003

Article  PubMed  Google Scholar 

Holst JJ, Burcelin R, Nathanson E (2011) Neuroprotective properties of GLP-1: theoretical and practical applications. Curr Med Res Opin 27(3):547–558. https://doi.org/10.1185/03007995.2010.549466

Article  CAS  PubMed  Google Scholar 

Jarrahi A, Braun M, Ahluwalia M, Gupta RV, Wilson M, Munie S, Ahluwalia P, Vender JR, Vale FL, Dhandapani KM, Vaibhav K (2020) Revisiting traumatic brain injury: from molecular mechanisms to therapeutic interventions. Biomedicines 8(10). https://doi.org/10.3390/biomedicines8100389

Kagal UA, Angadi NB, Matule SM (2017) Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: an experimental study. Int J Appl Basic Med Res 7(1):26–31. https://doi.org/10.4103/2229-516X.198516

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kosaraju J, Gali C C, Khatwal R B, Dubala A, Chinni S, Holsinger R M, Madhunapantula V S, Muthureddy Nataraj S K, Basavan D (2013) Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer's disease. Neuropharmacology 72291-300. https://doi.org/10.1016/j.neuropharm.2013.04.008

Kraeuter AK, Guest PC, Sarnyai Z (2019) The elevated plus maze test for measuring anxiety-like behavior in rodents. Methods Mol Biol 191669–191674. https://doi.org/10.1007/978-1-4939-8994-2_4

Kumar A, Loane DJ (2012) Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 26(8):1191–1201. https://doi.org/10.1016/j.bbi.2012.06.008

Article  PubMed  Google Scholar 

Kumari N, Pandey SK, Akhtar MZ, Dey M, Gautam AS, Nanda A, Tiwari A, Singh RK (2023) Roflumilast protects against neuroinflammatory alterations in brain tissues of Lipopolysaccharide-induced mice model. Curr Alzheimer Res 20(1):38–47. https://doi.org/10.2174/1567205020666230503141817

Article  CAS  PubMed  Google Scholar 

Lefevre-Dognin C, Cogné M, Perdrieau V, Granger A, Heslot C, Azouvi P (2021) Definition and epidemiology of mild traumatic brain injury. Neurochirurgie 67(3):218–221

Article  CAS  PubMed  Google Scholar 

Liu X, Chen C, Smith BJ (2008) Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther 325(2):349–356. https://doi.org/10.1124/jpet.107.130294

Article  CAS  PubMed  Google Scholar 

Merchenthaler I, Lane M, Shughrue P (1999) Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403(2):261–280. https://doi.org/10.1002/(sici)1096-9861(19990111)403:2%3C;261::aid-cne8%3E;3.0.co;2-5

Miyazaki Y, Kobayashi K, Matsushita S, Shimizu N, Murata T (2022) An assessment of the spontaneous locomotor activity of BALB/c mice. J Pharmacol Sci 149(2):46–52. https://doi.org/10.1016/j.jphs.2022.03.001

Article  CAS  PubMed  Google Scholar 

Nassar N N, Al-Shorbagy M Y, Arab H H, Abdallah D M (2015) Saxagliptin: a novel antiparkinsonian approach. Neuropharmacology 89308-317. https://doi.org/10.1016/j.neuropharm.2014.10.007

Nauck MA, Quast DR, Wefers J, Meier JJ (2021) GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab 46101102. https://doi.org/10.1016/j.molmet.2020.101102

Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

Article  CAS  PubMed  Google Scholar 

Ram C, Gairola S, Verma S, Mugale MN, Bonam SR, Murty US, Sahu BD (2023) Biochanin A ameliorates nephropathy in high-fat diet/streptozotocin-induced diabetic rats: effects on NF-kB/NLRP3 axis, pyroptosis, and fibrosis. Antioxid (Basel) 12(5). https://doi.org/10.3390/antiox12051052

Razavi SM, Arab ZN, Niknejad A, Hosseini Y, Fouladi A, Khales SD, Shahali M, Momtaz S, Butler AE, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Sahebkar A (2024) Therapeutic effects of anti-diabetic drugs on traumatic brain injury. Diabetes Metab Syndr 18(2):102949. https://doi.org/10.1016/j.dsx.2024.102949

Article  CAS  PubMed  Google Scholar 

Reiter A, Kivitz G, Castile RM, Cannon P, Lakes E, Jacobs B, Allen K, Chamberlain AM, Lake SP (2019) Functional measures of grip strength and gait remain altered Long-term in a rat model of Post-traumatic elbow contracture. J Biomech Eng 141(7):0710011–0710018. https://doi.org/10.1115/1.4043433

Article  PubMed  PubMed Central  Google Scholar 

Sahu BD, Rentam KK, Putcha UK, Kuncha M, Vegi GM, Sistla R (2011) Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Food Chem Toxicol 49(12):3090–3097. https://doi.org/10.1016/j.fct.2011.08.018

Article  CAS  PubMed  Google Scholar 

Silvestro S, Raffaele I, Quartarone A, Mazzon E (2024) Innovative insights into traumatic brain injuries: biomarkers and new Pharmacological targets. Int J Mol Sci 25(4). https://doi.org/10.3390/ijms25042372

Sulhan S, Lyon KA, Shapiro LA, Huang JH (2020) Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: pathophysiology and potential therapeutic targets. J Neurosci Res 98(1):19–28. https://doi.org/10.1002/jnr.24331

Article  CAS  PubMed  Google Scholar 

Tsenter J, Beni-Adani L, Assaf Y, Alexandrovich AG, Trembovler V, Shohami E (2008) Dynamic changes in the recovery after traumatic brain injury in mice: effect of injury severity on T2-weighted MRI abnormalities, and motor and cognitive functions. J Neurotrauma 25(4):324–333. https://doi.org/10.1089/neu.2007.0452

Article  PubMed  Google Scholar 

Wang A, Dorso C, Kopcho L, Locke G, Langish R, Harstad E, Shipkova P, Marcinkeviciene J, Hamann L, Kirby MS (2012) Potency, selectivity and prolonged binding of saxagliptin to DPP4: maintenance of DPP4 Inhibition by saxagliptin in vitro and ex vivo when compared to a rapidly-dissociating DPP4 inhibitor. BMC Pharmacol 122. https://doi.org/10.1186/1471-2210-12-2

Zhu W, Ding Y, Kong W, Li T, Chen H (2018) Docosahexaenoic acid (DHA) provides neuroprotection in traumatic brain injury models via activating Nrf2-ARE signaling. Inflammation 41(4):1182–1193. https://doi.org/10.1007/s10753-018-0765-z

Article  CAS 

Comments (0)

No login
gif