Disturbances in mitochondrial quality control and mitochondria-lysosome contact underlie the cerebral cortex and heart damage of mucopolysaccharidosis type II mice

Aggarwal S, Mannam P, Zhang J (2016) Differential regulation of autophagy and mitophagy in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 311:433–452. https://doi.org/10.1152/ajplung.00128.2016

Article  Google Scholar 

Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145. https://doi.org/10.1016/s0304-3940(01)01636-6

Article  CAS  PubMed  Google Scholar 

Al Sawaf S, Mayatepek E, Hoffmann B (2008) Neurological findings in Hunter disease: pathology and possible therapeutic effects reviewed. J Inherit Metab Dis 31:473–480. https://doi.org/10.1007/s10545-008-0878-x

Article  CAS  PubMed  Google Scholar 

Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42. https://doi.org/10.1038/cdd.2012.81

Article  CAS  PubMed  Google Scholar 

Azambuja AS, Correa L, Gabiatti BP et al (2018) Aversive and non-aversive memory impairment in the mucopolysaccharidosis II mouse model. Metab Brain Dis 33:343–345. https://doi.org/10.1007/s11011-017-0110-5

Article  CAS  PubMed  Google Scholar 

Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. https://doi.org/10.1385/0-89603-472-0:347

Article  CAS  PubMed  Google Scholar 

Calvo-Rodriguez M, Kharitonova EK, Snyder AC et al (2024) Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid Β aggregates in vivo in a mouse model of Alzheimer’s disease. Mol Neurodegener 19:6. https://doi.org/10.1186/s13024-024-00702-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cisneros J, Belton TB, Shum GC et al (2022) Mitochondria-lysosome contact site dynamics and misregulation in neurodegenerative diseases. Trends Neurosci 45:312–322. https://doi.org/10.1016/j.tins.2022.01.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui M, Yamano K, Yamamoto-Imoto H et al (2024) HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence. Proc Natl Acad Sci 121. https://doi.org/10.1073/pnas.2306454120

Dʹavanzo F, Rigon L, Zanetti A, Tomanin R (2020) Mucopolysaccharidosis type II: one hundred years of research, diagnosis, and treatment. Int J Mol Sci 21:1–38. https://doi.org/10.3390/ijms21041258

Article  CAS  Google Scholar 

da Rosa-Junior NT, Parmeggiani B, Glänzel NM et al (2020) In vivo evidence that Bezafibrate prevents oxidative stress and mitochondrial dysfunction caused by 3-methylglutaric acid in rat liver. Biochimie 171–172:187–196. https://doi.org/10.1016/j.biochi.2020.03.007

Article  CAS  PubMed  Google Scholar 

Da Silva CG, Ribeiro CAJ, Leipnitz G et al (2002) Inhibition of cytochrome C oxidase activity in rat cerebral cortex and human skeletal muscle by D-2-hydroxyglutaric acid in vitro. Biochim Et Biophys 1586:81–91. https://doi.org/10.1016/s0925-4439(01)00088-6

Article  Google Scholar 

Figueira TR, Melo DR, Vercesi AE, Castilho RF (2012) Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Mitochondrial Bioenergetics: Methods Protocols 810:103–117. https://doi.org/10.1007/978-1-61779-382-0

Article  CAS  Google Scholar 

Filippon L, Vanzin CS, Biancini GB et al (2011) Oxidative stress in patients with mucopolysaccharidosis type II before and during enzyme replacement therapy. Mol Genet Metab 103:121–127. https://doi.org/10.1016/j.ymgme.2011.02.016

Article  CAS  PubMed  Google Scholar 

Fischer JC, Ruitenbeek W, Berden JA et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36. https://doi.org/10.1016/0009-8981(85)90135-4

Article  CAS  PubMed  Google Scholar 

Hampe CS, Yund BD, Orchard PJ et al (2021) Differences in MPS I and MPS II disease manifestations. Int J Mol Sci 22:1–25. https://doi.org/10.3390/ijms22157888

Article  CAS  Google Scholar 

Hansson A, Hance N, Dufour E et al (2003) A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. PNAS 101:3136–3141. https://doi.org/10.1073/pnas.0308710100

Article  CAS  Google Scholar 

Hughes BP (1962) A method for the Estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological Sera. Clin Chim Acta 7(62):597–603. https://doi.org/10.1016/0009-

Article  CAS  PubMed  Google Scholar 

Ivanova MM, Changsila E, Iaonou C, Goker-Alpan O (2019) Impaired autophagic and mitochondrial functions are partially restored by ERT in gaucher and Fabry diseases. PLoS ONE 14:1–22. https://doi.org/10.1371/journal.pone.0210617

Article  CAS  Google Scholar 

Jacques CED, Lopes FF, Poletto E et al (2022) Evaluation of oxidative stress and mitochondrial function in a type II mucopolysaccharidosis cellular model: in vitro effects of genistein and coenzyme Q10. Metab Brain Dis. https://doi.org/10.1007/s11011-022-01062-w

Jin SM, Youle RJ (2012) PINK1-and Parkin-mediated mitophagy at a glance. J Cell Sci 125:795–799. https://doi.org/10.1242/jcs.093849

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kampmann C, Beck M, Morin I, Loehr JP (2011) Prevalence and characterization of cardiac involvement in Hunter syndrome. J Pediatr 159. https://doi.org/10.1016/j.jpeds.2011.01.054

Kang C, Badr MA, Kyrychenko V et al (2018) Deficit in PINK1/PARKIN-mediated mitochondrial autophagy at late stages of dystrophic cardiomyopathy. Cardiovasc Res 114:90–102. https://doi.org/10.1093/cvr/cvx201

Article  CAS  PubMed  Google Scholar 

Kiselyov K, Jennigs JJJ, Rbaibi Y, Chu CT (2007) Autophagy, mitochondria and cell death in lysosomal storage diseases. Autophagy 3:259–262. https://doi.org/10.4161/auto.3906

Article  CAS  PubMed  Google Scholar 

Kitto GB (1969) Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart. Methods Enzymol 13:106–116. https://doi.org/10.1016/0076-6879(69)13023-2

Article  CAS  Google Scholar 

Lebel CP, Ischiropoulos H, Bondys SC (1992) Evaluation of the probe 2’,7’-Dichiorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231. https://doi.org/10.1021/tx00026a012

Article  CAS  PubMed  Google Scholar 

Lee DE, Brown JL, Rosa-Caldwell ME et al (2021) Cancer‐induced cardiac atrophy adversely affects myocardial redox state and mitochondrial oxidative characteristics. JCSM Rapid Commun 4:3–15. https://doi.org/10.1002/rco2.18

Article  PubMed  Google Scholar 

Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-Metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556. https://doi.org/10.1111/j.1471-4159.1981.tb06326.x

Article  CAS  PubMed  Google Scholar 

Lloyd-evans E, Haslett LJ (2016) The lysosomal storage disease continuum with ageing- related neurodegenerative disease. Ageing Res Rev 32:104–121. https://doi.org/10.1016/j.arr.2016.07.005

Article  PubMed  Google Scholar 

Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

Article  CAS  PubMed  Google Scholar 

Makrecka-Kuka M, Krumschnabel G, Gnaiger E (2015) High-resolution respirometry for simultaneous measurement of oxygen and hydrogen peroxide fluxes in permeabilized cells, tissue homogenate and isolated mitochondria. Biomolecules 5:1319–1338. https://doi.org/10.3390/biom5031319

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marklund SL (1985) Product of extracellular-superoxide dismutase catalysis. FEBS Lett 184:237–239. https://doi.org/10.1016/0014-5793(85)80613-x

Article  CAS 

Comments (0)

No login
gif