The role of Panax ginseng in neurodegenerative disorders: mechanisms, benefits, and future directions

Alonso AD, Cohen LS, Corbo C, Morozova V, Elidrissi A, Phillips G, Kleiman FE (2018) Hyperphosphorylation of Tau associates with changes in its function beyond microtubule stability. Front Cell Neurosci 12:338

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ardah MT, Paleologou KE, Lv G, Menon SA, Khair SBA, Lu J-H, Safieh-Garabedian B, Al-Hayani AA, Eliezer D, Li M (2015) Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils. Neurobiol Dis 74:89–101

Article  CAS  PubMed  Google Scholar 

Cao G, Su P, Zhang S, Guo L, Zhang H, Liang Y, Qin C, Zhang W (2016) Ginsenoside re reduces Aβ production by activating PPARγ to inhibit BACE1 in N2a/APP695 cells. Eur J Pharmacol 793:101–108

Article  CAS  PubMed  Google Scholar 

Chen X-C, Zhu Y-G, Zhu L-A, Huang C, Chen Y, Chen L-M, Fang F, Zhou Y-C, Zhao C-H (2003) Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur J Pharmacol 473:1–7

Article  CAS  PubMed  Google Scholar 

Chen XC, Zhou YC, Chen Y, Zhu YG, Fang F, Chen LM (2005) Ginsenoside Rg1 reduces MPTP-induced substantia Nigra neuron loss by suppressing oxidative stress 1. Acta Pharmacol Sin 26:56–62

Article  PubMed  Google Scholar 

Choi RJ, Roy A, Jung HJ, Ali MY, Min B-S, Park CH, Yokozawa T, Fan T-P, Choi JS, Jung HA (2016) BACE1 molecular Docking and anti-Alzheimer’s disease activities of ginsenosides. J Ethnopharmacol 190:219–230

Article  CAS  PubMed  Google Scholar 

Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, Liu M, Yao D (2014) Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 19:317–326

Article  CAS  PubMed  Google Scholar 

Delaby C, Alcolea D, Hirtz C, Vialaret J, Kindermans J, Morichon L, Fortea J, Belbin O, Gabelle A, Blennow K (2022) Blood amyloid and Tau biomarkers as predictors of cerebrospinal fluid profiles. J Neural Transm 129:231–237

Article  CAS  PubMed  Google Scholar 

Deng S, Wong CKC, Lai H-C, Wong AST (2016) Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous Inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition. Oncotarget 8:25897

Article  PubMed Central  Google Scholar 

Engelberg D, Mccutcheon A, Wiseman S (2001) A case of ginseng-induced mania. J Clin Psychopharmacol 21:535–537

Article  CAS  PubMed  Google Scholar 

Etemadifar M, Sayahi F, Abtahi S-H, Shemshaki H, Dorooshi G-A, Goodarzi M, Akbari M, Fereidan-Esfahani M (2013) Ginseng in the treatment of fatigue in multiple sclerosis: a randomized, placebo-controlled, double-blind pilot study. Int J Neurosci 123:480–486

Article  PubMed  Google Scholar 

Franco-Iborra S, Plaza-Zabala A, Montpeyo M, Sebastian D, Vila M, Martinez-Vicente M (2021) Mutant HTT (huntingtin) impairs mitophagy in a cellular model of huntington disease. Autophagy 17:672–689

Article  CAS  PubMed  Google Scholar 

Gahtani RM, Shoaib S, Hani U, Jayachithra R, Alomary MN, Chauhan W, Jahan R, Tufail S, Ansari MA (2024) Combating Parkinson’s disease with plant-derived polyphenols: targeting oxidative stress and neuroinflammation. Neurochem Int 178:105798

Article  CAS  PubMed  Google Scholar 

Gao Y, Chu S-F, Li J-P, Zhang Z, Yan J-Q, Wen Z-L, Xia C-Y, Mou Z, Wang Z-Z, He W-B (2015) Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington’s disease. Acta Pharmacol Sin 36:311–322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong YS, Zhang JT (1999) Effect of 17-β-estradiol and ginsenoside Rg1 on reactive microglia induced by β-amyloid peptides. J Asian Nat Prod Res 1:153–161

Article  CAS  PubMed  Google Scholar 

González-Burgos E, Fernández-Moriano C, Lozano R, Iglesias I, Gómez-Serranillos M (2017) Ginsenosides Rd and re co-treatments improve rotenone-induced oxidative stress and mitochondrial impairment in SH-SY5Y neuroblastoma cells. Food Chem Toxicol 109:38–47

Article  PubMed  Google Scholar 

Gray SL, Lackey BR, Tate PL, Riley MB, Camper ND (2004) Mycotoxins in root extracts of American and Asian ginseng bind Estrogen receptors α and Β. Experimental Biology Med 229:560–568

Article  CAS  Google Scholar 

Gubandru M, Margina D, Tsitsimpikou C, Goutzourelas N, Tsarouhas K, Ilie M, Tsatsakis AM, Kouretas D (2013) Alzheimer’s disease treated patients showed different patterns for oxidative stress and inflammation markers. Food Chem Toxicol 61:209–214

Article  CAS  PubMed  Google Scholar 

Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933

Article  PubMed  PubMed Central  Google Scholar 

He Y, Zhao H, Su G (2014) Ginsenoside Rg1 decreases neurofibrillary tangles accumulation in retina by regulating activities of Neprilysin and PKA in retinal cells of AD mice model. J Mol Neurosci 52:101–106

Article  CAS  PubMed  Google Scholar 

Hu S, Han R, Mak S, Han Y (2011) Protection against 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng CA Meyer) in SH-SY5Y cells. J Ethnopharmacol 135:34–42

Article  CAS  PubMed  Google Scholar 

Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y (2011) An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 138:169–178

Article  CAS  PubMed  Google Scholar 

Hwang E, Park S-Y, Yin CS, Kim H-T, Kim YM, Yi TH (2017) Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res 41:69–77

Article  PubMed  Google Scholar 

Ionescu-Tucker A, Cotman CW (2021) Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging 107:86–95

Article  CAS  PubMed  Google Scholar 

Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A (2024) A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington’s disease. Mol Neurobiol 61:1237–1270

Article  CAS  PubMed  Google Scholar 

Jakaria M, Haque ME, Kim J, Cho D-Y, Kim I-S, Choi D-K (2018) Active ginseng components in cognitive impairment: therapeutic potential and prospects for delivery and clinical study. Oncotarget 9:33601

Article  PubMed  PubMed Central  Google Scholar 

Jang M, Lee MJ, Kim CS, Cho IH (2013) Korean Red Ginseng Extract Attenuates 3-Nitropropionic Acid-Induced Huntington’s-Like Symptoms. Evid Based Complement Alternat Med 2013:237207

Jang M, Choi JH, Chang Y, Lee SJ, Nah S-Y, Cho I-H (2019) Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington’s disease: activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav Immun 80:146–162

Article  CAS  PubMed  Google Scholar 

Jiang F, Desilva S, Turnbull J (2000) Beneficial effect of ginseng root in SOD-1 (G93A) Transgenic mice. J Neurol Sci 180:52–54

Article  CAS  PubMed  Google Scholar 

Jin W, Li C, Yang S, Song S, Hou W, Song Y, Du Q (2023) Hypolipidemic effect and molecular mechanism of ginsenosides: A review based on oxidative stress. Front Pharmacol 14:1166898

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joo SS, Won TJ, Lee DI (2005) Reciprocal activity of ginsenosides in the production of Proinflammatory repertoire, and their potential roles in neuroprotection in vitro. Planta Med 71:476–481

Article  CAS  PubMed 

Comments (0)

No login
gif