Intermittent fasting reduces interictal epileptiform discharges and hippocampal reactive astrogliosis during electrical kindling epileptogenesis

Abe S, Tanaka T, Fukuma K, Matsubara S, Motoyama R, Mizobuchi M, Yoshimura H, Matsuki T, Manabe Y, Suzuki J, Ishiyama H, Tojima M, Kobayashi K, Shimotake A, Nishimura K, Koga M, Toyoda K, Murayama S, Matsumoto R, Takahashi R, Ikeda A, Ihara M (2022) Interictal epileptiform discharges as a predictive biomarker for recurrence of poststroke epilepsy. Brain Commun 26:fcac312. https://doi.org/10.1093/braincomms/fcac312

Amigo I, Kowaltowski AJ (2014) Dietary restriction in cerebral bioenergetics and redox state. Redox Biol 11:296–304. https://doi.org/10.1016/j.redox.2013.12.021

Article  CAS  Google Scholar 

Aubert S, Bonini F, Curot J, Valton L, Szurhaj W, Derambure P, Rheims S, Ryvlin P, Wendling F, McGonigal A, Trébuchon A, Bartolomei F (2016) The role of sub-hippocampal versus hippocampal regions in bitemporal lobe epilepsies. Clin Neurophysiol 127:2992–2999. https://doi.org/10.1016/j.clinph.2016.06.021

Article  PubMed  Google Scholar 

Balasse EO (1979) Kinetics of ketone body metabolism in fasting humans. Metabolism 28:41–50. https://doi.org/10.1016/0026-0495(79)90166-5

Article  PubMed  CAS  Google Scholar 

Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C (2022) Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives. Front Physiol 12:825816. https://doi.org/10.3389/fphys.2021.825816

Article  PubMed  PubMed Central  Google Scholar 

Becker A, Letzel K, Letzel U, Grecksch G (1997) Kindling of the dorsal and the ventral hippocampus: effects on learning performance in rats. Physiol Behav 62:1265–1271. https://doi.org/10.1016/s0031-9384(97)00303-x

Article  PubMed  CAS  Google Scholar 

Beghi E (2020) The epidemiology of epilepsy. Neuroepidemiology 54:185–191. https://doi.org/10.1159/000503831

Article  PubMed  Google Scholar 

Boison D, Steinhäuser C (2018) Epilepsy and astrocyte energy metabolism. Glia 66:1235–1243. https://doi.org/10.1002/glia.23247

Article  PubMed  Google Scholar 

Bortel A, Lévesque M, Biagini G, Gotman J, Avoli M (2010) Convulsive status epilepticus duration as determinant for epileptogenesis and interictal discharge generation in the rat limbic system. Neurobiol Dis 40:478–489. https://doi.org/10.1016/j.nbd.2010.07.015

Article  PubMed  PubMed Central  Google Scholar 

Brandt C, Ebert U, Löscher W (2004) Epilepsy induced by extended amygdala-kindling in rats: lack of clear association between development of spontaneous seizures and neuronal damage. Epilepsy Res 62:135–156. https://doi.org/10.1016/j.eplepsyres.2004.08.008

Article  PubMed  CAS  Google Scholar 

Burkewitz K, Zhang Y, Mair WB (2014) AMPK at the nexus of energetics and aging. Cell Metab 20:10–25. https://doi.org/10.1016/j.cmet.2014.03.002

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chiba S, Wada JA (1997) The effect of electrolytic lesioning of the midbrain prior to amygdala kindling in rats. Neurosci Lett 227:83–86. https://doi.org/10.1016/s0304-3940(97)00311-x

Article  PubMed  CAS  Google Scholar 

Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human Temporal lobe epilepsy in vitro. Science 298:1418–1421. https://doi.org/10.1126/science

Article  PubMed  CAS  Google Scholar 

da Silva Lourenço C, Tjepkema-Cloostermans MC, van Putten MJAM (2021) Machine learning for detection of interictal epileptiform discharges. Clin Neurophysiol 132:1433–1443. https://doi.org/10.1016/j.clinph.2021.02.403

Article  PubMed  Google Scholar 

de Curtis M, Avanzini G (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol 63:541–567. https://doi.org/10.1016/s0301-0082(00)00026-5

Article  PubMed  Google Scholar 

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Article  PubMed  Google Scholar 

Díaz F, Aguilar F, Wellmann M, Martorell A, Gonzalez-Arancibia C, Chacana-Veliz L, Negron-Oyarzo I, Chavez AE, Fuenzalida M, Nualart F, Sotomayor-Zarate R, Bonansco C (2023) Enhanced astrocyte activity and excitatory synaptic function in the hippocampus of Pentylenetetrazole kindling model of epilepsy. Int J Mol Sci 24:14506. https://doi.org/10.3390/ijms241914506

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138. https://doi.org/10.1038/jcbfm.2011.175

Article  PubMed  CAS  Google Scholar 

Fisher RS, Scharfman HE, deCurtis M (2014) How can we identify ictal and interictal abnormal activity? Adv Exp Med Biol 813:3–23. https://doi.org/10.1007/978-94-017-8914-1_1

Article  PubMed  PubMed Central  Google Scholar 

Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G (2016) Interictal epileptiform discharges induce hippocampal-cortical coupling in Temporal lobe epilepsy. Nat Med 22:641–648. https://doi.org/10.1038/nm.4084

Article  PubMed  PubMed Central  CAS  Google Scholar 

Green RL, Wilson WP (1961) Asymmetries of beta activity in epilepsy, brain tumor, and cerebrovascular disease. Electroencephalogr Clin Neurophysiol 13:75–78. https://doi.org/10.1016/0013-4694(61)90077-3

Article  PubMed  CAS  Google Scholar 

Gzielo K, Soltys Z, Rajfur Z, Setkowicz ZK (2019) The impact of the ketogenic diet on glial cells morphology. A quantitative morphological analysis. Neuroscience 413:239–251. https://doi.org/10.1016/j.neuroscience.2019.06.009

Article  PubMed  CAS  Google Scholar 

Holmes GL (2022) Interictal spikes as an EEG biomarker of cognitive impairment. J Clin Neurophysiol 39:101–112. https://doi.org/10.1097/WNP.0000000000000728

Article  PubMed  Google Scholar 

Ivanov AI, Bernard C, Turner DA (2015) Metabolic responses differentiate between interictal, ictal and persistent epileptiform activity in intact, immature hippocampus in vitro. Neurobiol Dis 75:1–14. https://doi.org/10.1016/j.nbd.2014.12.013

Article  PubMed  CAS  Google Scholar 

Janicot R, Stafstrom CE, Shao LR (2020) 2-Deoxyglucose terminates pilocarpine-induced status epilepticus in neonatal rats. Epilepsia 61:1528–1537. https://doi.org/10.1111/epi.16583

Article  PubMed  CAS  Google Scholar 

Kalogeropoulos K, Psarropoulou C (2024) Immature status epilepticus alters the Temporal relationship between hippocampal interictal epileptiform discharges and high-frequency oscillations. Neuroscience 543:108–120. https://doi.org/10.1016/j.neuroscience.2024.02.019

Article  PubMed  CAS  Google Scholar 

Kessler SK, Gallagher PR, Shellhaas RA, Clancy RR, Bergqvist AG (2011) Early EEG improvement after ketogenic diet initiation. Epilepsy Res 94:94–101. https://doi.org/10.1016/j.eplepsyres.2011.01.012

Article  PubMed  PubMed Central  Google Scholar 

Lai N, Li Z, Xu C, Wang Y, Chen Z (2023) Diverse nature of interictal oscillations: EEG-based biomarkers in epilepsy. Neurobiol Dis 177:105999. https://doi.org/10.1016/j.nbd.2023.105999

Article  PubMed  CAS  Google Scholar 

Lambert I, Tramoni-Negre E, Lagarde S, Roehri N, Giusiano B, Trebuchon-Da FA, Carron R, Benar CG, Felician O, Bartolomei F (2020) Hippocampal interictal spikes during sleep impact long-term memory consolidation. Ann Neurol 87:976–987. https://doi.org/10.1002/ana.25744

Article  PubMed  Google Scholar 

Landgrave-Gómez J, Mercado-Gómez OF, Vázquez-García M, Rodríguez-Molina V, Córdova-Dávalos L, Arriaga-Ávila V, Miranda-Martinez A, Guevara-Guzman R (2016) Anticonvulsant effect of time-restricted feeding in a pilocarpine-induced seizure model: metabolic and epigenetic implications. Front Cell Neurosci 10:7. https://doi.org/10.3389/fncel.2016.00007

Article 

Comments (0)

No login
gif