Progress of extracorporeal centrifugal pumps for mechanical circulatory supports

Hall JE, James PA, Lucas BG, Waterston DJ. Some observations on industrial pumps for extracorporeal circulation in man. Thorax. 1958;13:34–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saxton GA, Andrews CB. An ideal heart pump with hydrodynamic characteristics analogous to the mammalian heart. Trans Am Soc Artif Intern Organs. 1960;6:288–91.

PubMed  Google Scholar 

Bernstein EF, Dorman FD, Blackshear PL Jr, Scott DR. An efficient, compact blood pump for assisted circulation. Surgery. 1970;68:105–15.

CAS  PubMed  Google Scholar 

Berstein EF, DeLaria GA, Johansen KH, Shuman RL, Stasz P, Reich S. Twenty-four hour left ventricular bypass with a centrifugal blood pump. Ann Surg. 1975;181:412–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lynch MF, Peterson D, Baker V. Centrifugal blood pumping for open heart surgery. Minn Med. 1978;61:536–8.

CAS  PubMed  Google Scholar 

Jerabek CF, Walton HG. Clinical evaluation of the sarns 7800 LX modular centrifugal pump. J ExtraCorp Technol. 1989;21:57–60.

Article  Google Scholar 

Nishida H, Yamaki F, Nakatani H, et al. Development of the terumo capiox centrifugal pump and its clinical application to open heart surgery: a comparative study with the roller pump. Artif Organs. 1993;17:323–7.

Article  CAS  PubMed  Google Scholar 

Akamatsu T, Shiroyama T, Fukumasu H. Development of nutating centrifugal blood pump. Artif Heart. 1987;2:107–12.

Google Scholar 

Kabei N, Komasaka S, Sakurai Y, Tsuchiya K. A blood pump with a swinging atrioventricular septal wall. Jpn J Artif Organs. 1990;19:109–12.

Google Scholar 

Mendler N, Podechtl F, Feil G, Hiltmann P, Sebening F. Seal-less centrifugal blood pump with magnetically suspended rotor: rot-a-flot. Artif Organs. 1995;19:620–4.

Article  CAS  PubMed  Google Scholar 

Yamane T, Nishida M, Asztalos B, Tsutsui T, Jikuya T. Fluid dynamic characteristics of monopivot magnetic suspension blood pumps. ASAIO J. 1997;43(5):M635–8.

Article  CAS  PubMed  Google Scholar 

Makinouchi K, Nose Y, et al. Evaluation of the wear of the pivot bearing in the gyro C1E3 pump. Artif Organs. 1996;20:523–8.

Article  PubMed  Google Scholar 

Iizuka K, Katagiri N, Takewa Y, Tsukiya T, Mizuno T, Itamochi Y, Kumano K, Tatsumi E. Evaluation of the novel centrifugal pump, CAPIOX SL, in chronic large animal experiments. Artif Organs. 2018;42:835–41.

Article  CAS  PubMed  Google Scholar 

Ohara Y, Takatani S, Nosé Y. In vitro analysis of the floating mode phenomenon in the free impeller gyro pump. Artif Organs. 1995;19:635–8.

Article  CAS  PubMed  Google Scholar 

Staessens S, Moussa MD, Pierache A, et al. Thrombus formation during ECMO: insights from a detailed histological analysis of thrombus composition. J Thromb Haemost. 2022;20:2058–69.

Article  CAS  PubMed  Google Scholar 

Rowlands GW, Pagani FD, Antaki JF. Classification of the frequency, severity, and propagation of thrombi in the heartmate II left ventricular assist device. ASAIO J. 2020;66:992–9.

Article  PubMed  Google Scholar 

Akamatsu T, Nakazeki T, Itoh H. Centrifugal blood pump with a magnetically suspended impeller. Artif Organs. 1992;6:305–8.

Article  Google Scholar 

Schoeb R, Barletta N, Fleischli A, Bourque K, Gernes D, Loree H, Richardson JS, Poirier V. Heartmate III: bearlingless motor design for a maglev centrifugal LVAD. ASAIO J. 2000;46:191.

Article  Google Scholar 

Esmore DS, Kaye D, Salamonsen R, et al. First clinical implant of the VentrAssist left ventricular assist system as destination therapy for end-stage heart failure. J Heart Lung Transp. 2005;24:1150–4.

Article  Google Scholar 

Tuzun E, Roberts K, Cohn WE, et al. In vivo evaluation of the HeartWare centrifugal ventricular assist device. Tex Heart Inst J. 2007;34:406–11.

PubMed  PubMed Central  Google Scholar 

Radovancevic B, Barlow-Malone B, Tamez D, Dasse KA, Richardson JS, Moore SR, Tuzun E, Kindo M, Gregoric ID, Frazier OH. Levitronix centrimag® short-term ventricular assist system in the bovine model. ASAIO J. 2003;49:172.

Article  Google Scholar 

Mikus E, Tripodi A, Calvi S, Giglio MD, Cavallucci A, Lamarra M. CentriMag venoarterial extracorporeal membrane oxygenation support as treatment for patients with refractory postcardiotomy cardiogenic shock. ASAIO J. 2013;59:18–23.

Article  CAS  PubMed  Google Scholar 

Aziz TA, Singh G, Popjes E, Stephenson E, Mulvey S, Pae W, El-Banayosy A. Initial experience with CentriMag extracorporeal membrane oxygenation for support of critically ill patients with refractory cardiogenic shock. J Heart Lung Transplant. 2010;29:66–71.

Article  PubMed  Google Scholar 

John R, Liao K, Lietz K, et al. Experience with the levitronix CentriMag circulatory support system as a bridge to decision in patients with refractory acute cardiogenic shock and multisystem organ failure. J Thorac Cardiovasc Surg. 2007;134:351–8. https://doi.org/10.1016/j.jtcvs.2007.01.085.

Article  PubMed  Google Scholar 

Bhama JK, Kornos RL, Toyoda Y, Teuteberg JJ, McCurry KR, Siegenthaler MP. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transform. 2009;28:971–6.

Article  Google Scholar 

Condello I, Santarpino G, Serraino GF, Mastroroberto P, Speziale G, Nasso G. Magnetic levitation pump versus constrained vortex pump: a pilot study on the hemolysis effect during minimal invasive extracorporeal circulation. J Cardiothorac Surg. 2021;16:253.

Article  PubMed  PubMed Central  Google Scholar 

Li P, Zhang X, Chen S, et al. Case report: successful percutaneous extracorporeal magnetic levitation ventricular assist device support in a patient with left heart failure due to dilated cardiomyopathy. Front Cardiovasc Med. 2023;10:1093794.

Article  PubMed  PubMed Central  Google Scholar 

Tsukiya T, Mizuno T, Takewa Y, Tatsumi E, Taenaka Y. Preclinical study of a novel hydrodynamically levitated centrifugal pump for long-term cardiopulmonary support : in vivo performance during percutaneous cardiopulmonary support. J Artif Organs. 2015;18:300–6.

Article  PubMed  Google Scholar 

Shimamura J, Mizuno T, Takewa Y, et al. Miniaturized centrifugal ventricular assist device for bridge to decision: preclinical chronic study in a bovine model. Artif Organs. 2019;43:821–7.

Article  CAS  PubMed  Google Scholar 

Dalton HJ, Cashen K, Reeder RW, Berg RA, Shanley TP, Newth CJL, Pollack MM, Wessel D, Carcillo J, Harrison R, Dean JM, Meert KL. Eunice kennedy shriver national institute of child health and human development collaborative pediatric critical care research network (CPCCRN). Hemolysis during pediatric extracorporeal membrane oxygenation: associations with circuitry, complications, and mortality. Pediatr Crit Care Med. 2018;19:1067–76.

Article  PubMed  PubMed Central  Google Scholar 

Jansen SV, Heinemann C, Schüller M, Schmitz-Rode T, Steinseifer U. Toward an adjustable blood pump for wide-range operation: in-vitro results of performance curve and hydraulic efficiency. ASAIO J. 2024;70:579–85.

Article  CAS  PubMed  Google Scholar 

Griffith BP, Wu ZJ, Zhang J. Pasta for all: abiomed breethe extracorporeal membrane oxygenation system. JTCVS Open. 2021;16:108–13.

Article  Google Scholar 

Mariscalco G, El-Dean Z, Yusuff H, et al. Duration of Venoarterial extracorporeal membrane oxygenation and mortality in postcardiotomy cardiogenic shock. J Cardiothorac Vasc Anesth. 2021;35:2662–8.

Article  PubMed  Google Scholar 

Barbaro RP, MacLaren G, Boonstra PS, et al. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the extracorporeal life support organization registry. Lancet. 2020;396:1071–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alwardt CM, DeValeria PA, Sen A, et al. First use of a novel extracorporeal life support system: successful application in tracheoesophageal fistula repair. J Extra Corpor Technol. 2022;54:73–8. https://doi.org/10.1182/ject-73-78.

Comments (0)

No login
gif