Reduction of Neuroinflammation as a Common Mechanism of Action of Anorexigenic and Orexigenic Peptide Analogues in the Triple Transgenic Mouse Model of Alzheimer´s Disease

Alford S, Patel D, Perakakis N, Mantzoros CS (2018) Obesity as a risk factor for Alzheimer’s disease: weighing the evidence. Obes Rev 19(2):269–280. https://doi.org/10.1111/obr.12629

Article  PubMed  CAS  Google Scholar 

Beach TG, McGeer EG (1988) Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer’s disease visual cortex. Brain Res 463(2):357–361. https://doi.org/10.1016/0006-8993(88)90410-6

Article  PubMed  CAS  Google Scholar 

Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, Oddo S (2019) Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell 18(1):e12873. https://doi.org/10.1111/acel.12873

Article  PubMed  CAS  Google Scholar 

Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45(5):675–688. https://doi.org/10.1016/j.neuron.2005.01.040

Article  PubMed  CAS  Google Scholar 

Bronzuoli MR, Iacomino A, Steardo L, Scuderi C (2016) Targeting neuroinflammation in Alzheimer’s disease. J Inflamm Res 9:199–208. https://doi.org/10.2147/JIR.S86958

Article  PubMed  PubMed Central  CAS  Google Scholar 

Calvo-Rodriguez M, García-Rodríguez C, Villalobos C, Núñez L (2020) Role of toll like receptor 4 in alzheimer’s disease. Front Immunol 11:1588. https://doi.org/10.3389/fimmu.2020.01588

Article  PubMed  PubMed Central  CAS  Google Scholar 

Caruso D, Barron AM, Brown MA, Abbiati F, Carrero P, Pike CJ, Garcia-Segura LM, Melcangi RC (2013) Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiol Aging 34(4):1080–1089. https://doi.org/10.1016/j.neurobiolaging.2012.10.007

Article  PubMed  CAS  Google Scholar 

Carvalho C, Machado N, Mota PC, Correia SC, Cardoso S, Santos RX, Santos MS, Oliveira CR, Moreira PI (2013) Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive, and vascular anomalies. J Alzheimers Dis 35(3):623–635. https://doi.org/10.3233/JAD-130005

Article  PubMed  CAS  Google Scholar 

Chen Y, Cao CP, Li CR, Wang W, Zhang D, Han LL, Zhang XQ, Kim A, Kim S, Liu GL (2010) Ghrelin modulates insulin sensitivity and tau phosphorylation in high glucose-induced hippocampal neurons. Biol Pharm Bull 33(7):1165–1169. https://doi.org/10.1248/bpb.33.1165

Article  PubMed  CAS  Google Scholar 

Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, Deng Y (2017) liraglutide improves water maze learning and memory performance while reduces hyperphosphorylation of tau and neurofilaments in APP/PS1/Tau triple transgenic mice. Neurochem Res 42(8):2326–2335. https://doi.org/10.1007/s11064-017-2250-8

Article  PubMed  CAS  Google Scholar 

Dallas ML, Widera D (2021) TLR2 and TLR4-mediated inflammation in Alzheimer’s disease: self-defense or sabotage? Neural Regen Res 16(8):1552–1553. https://doi.org/10.4103/1673-5374.303016

Article  PubMed  PubMed Central  CAS  Google Scholar 

Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschop MH, Horvath TL (2006) Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9(3):381–388. https://doi.org/10.1038/nn1656

Article  PubMed  CAS  Google Scholar 

Edison P, Femminella GD, Ritchie CW, Holmes C, Walker Z, Ridha BH, Raza S, Livingston NR, Nowell J, Busza G, Frangou E, Love S, Williams G, Lawrence RM, McFarlane B, Archer H, Coulthard E, Underwood B, Koranteng P, ... Ballard C (2021) Evaluation of liraglutide in the treatment of Alzheimer's disease. Alzheimer's Dement 17(S9):e057848. https://doi.org/10.1002/alz.057848

Edison P, Femminella GD, Ritchie C, Nowell J, Holmes C, Walker Z, Ridha BH, Williams G, Lawrence RM, McFarlane B (2023) MRI changes following treatment of GLP-1 analogue, liraglutide in alzheimer’s disease. Alzheimers Dement 19:e080538

Article  Google Scholar 

Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C, Alba G, Flores-Barragán A, Sánchez-Margalet V (2022) Obesity as a risk factor for dementia and Alzheimer’s disease: the role of leptin. Int J Mol Sci 23(9):5202

Article  PubMed  PubMed Central  CAS  Google Scholar 

Franklin K, Paxinos G (2008) The Mouse Brain in Stereotaxic Coordinates. Academic Press

Google Scholar 

Frost GR, Li YM (2017) The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol 7(12):170228. https://doi.org/10.1098/rsob.170228

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217(2):459–472. https://doi.org/10.1083/jcb.201709069

Article  PubMed  PubMed Central  CAS  Google Scholar 

Heneka M, Carson M, El Khoury J, Landreth G, Brosseron F, Feinstein D, Jacobs A, Wyss-Coray T, Vitorica J, Ransohoff R (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. https://doi.org/10.1016/s1474-4422(15)70016-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hölscher C (2024) Glucagon-like peptide-1 class drugs show clear protective effects in Parkinson’s and Alzheimer’s disease clinical trials: A revolution in the making? Neuropharmacology 253:109952. https://doi.org/10.1016/j.neuropharm.2024.109952

Article  PubMed  CAS  Google Scholar 

Holubova M, Blechova M, Kakonova A, Kunes J, Zelezna B, Maletinska L (2018) In vitro and in vivo characterization of novel stable peptidic ghrelin analogs: beneficial effects in the settings of lipopolysaccharide-induced anorexia in mice. J Pharmacol Exp Ther 366(3):422–432. https://doi.org/10.1124/jpet.118.249086

Article  PubMed  CAS  Google Scholar 

Holubová M, Hrubá L, Popelová A, Bencze M, Pražienková V, Gengler S, Kratochvílová H, Haluzík M, Železná B, Kuneš J, Hölscher C, Maletínská L (2019) Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology 144:377–387. https://doi.org/10.1016/j.neuropharm.2018.11.002

Article  PubMed  CAS  Google Scholar 

Jeong YO, Shin SJ, Park JY, Ku BK, Song JS, Kim JJ, Jeon SG, Lee SM, Moon M (2018) MK-0677, a ghrelin agonist, alleviates amyloid beta-related pathology in 5XFAD mice, an animal model of Alzheimer’s disease. Int J Mol Sci 19(6):1800. https://doi.org/10.3390/ijms19061800

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kacířová M, Zmeškalová A, Kořínková L, Železná B, Kuneš J, Maletínská L (2020) Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer’s disease-like pathology? Clin Sci (Lond) 134(5):547–570. https://doi.org/10.1042/cs20191313

Article  PubMed  CAS  Google Scholar 

Kacířová M, Železná B, Blažková M, Holubová M, Popelová A, Kuneš J, Šedivá B, Maletínská L (2021) Aging and high-fat diet feeding lead to peripheral insulin resistance and sex-dependent changes in brain of mouse model of tau pathology THY-Tau22. J Neuroinflammation 18(1):141. https://doi.org/10.1186/s12974-021-02190-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kashon ML, Ross GW, O’Callaghan JP, Miller DB, Petrovitch H, Burchfiel CM, Sharp DS, Markesbery WR, Davis DG, Hardman J, Nelson J, White LR (2004) Associations of cortical astrogliosis with cognitive performance and dementia status. J Alzheimers Dis 6(6):595–604. https://doi.org/10.3233/jad-2004-6604. (discussion 673-581)

Article  PubMed  Google Scholar 

Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660. https://doi.org/10.1038/45230

Article  PubMed  CAS  Google Scholar 

Kumar V (2019) Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 332:16–30. https://doi.org/10.1016/j.jneuroim.2019.03.012

Article 

Comments (0)

No login
gif