Alford S, Patel D, Perakakis N, Mantzoros CS (2018) Obesity as a risk factor for Alzheimer’s disease: weighing the evidence. Obes Rev 19(2):269–280. https://doi.org/10.1111/obr.12629
Article PubMed CAS Google Scholar
Beach TG, McGeer EG (1988) Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer’s disease visual cortex. Brain Res 463(2):357–361. https://doi.org/10.1016/0006-8993(88)90410-6
Article PubMed CAS Google Scholar
Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, Oddo S (2019) Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell 18(1):e12873. https://doi.org/10.1111/acel.12873
Article PubMed CAS Google Scholar
Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45(5):675–688. https://doi.org/10.1016/j.neuron.2005.01.040
Article PubMed CAS Google Scholar
Bronzuoli MR, Iacomino A, Steardo L, Scuderi C (2016) Targeting neuroinflammation in Alzheimer’s disease. J Inflamm Res 9:199–208. https://doi.org/10.2147/JIR.S86958
Article PubMed PubMed Central CAS Google Scholar
Calvo-Rodriguez M, García-Rodríguez C, Villalobos C, Núñez L (2020) Role of toll like receptor 4 in alzheimer’s disease. Front Immunol 11:1588. https://doi.org/10.3389/fimmu.2020.01588
Article PubMed PubMed Central CAS Google Scholar
Caruso D, Barron AM, Brown MA, Abbiati F, Carrero P, Pike CJ, Garcia-Segura LM, Melcangi RC (2013) Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiol Aging 34(4):1080–1089. https://doi.org/10.1016/j.neurobiolaging.2012.10.007
Article PubMed CAS Google Scholar
Carvalho C, Machado N, Mota PC, Correia SC, Cardoso S, Santos RX, Santos MS, Oliveira CR, Moreira PI (2013) Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive, and vascular anomalies. J Alzheimers Dis 35(3):623–635. https://doi.org/10.3233/JAD-130005
Article PubMed CAS Google Scholar
Chen Y, Cao CP, Li CR, Wang W, Zhang D, Han LL, Zhang XQ, Kim A, Kim S, Liu GL (2010) Ghrelin modulates insulin sensitivity and tau phosphorylation in high glucose-induced hippocampal neurons. Biol Pharm Bull 33(7):1165–1169. https://doi.org/10.1248/bpb.33.1165
Article PubMed CAS Google Scholar
Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, Deng Y (2017) liraglutide improves water maze learning and memory performance while reduces hyperphosphorylation of tau and neurofilaments in APP/PS1/Tau triple transgenic mice. Neurochem Res 42(8):2326–2335. https://doi.org/10.1007/s11064-017-2250-8
Article PubMed CAS Google Scholar
Dallas ML, Widera D (2021) TLR2 and TLR4-mediated inflammation in Alzheimer’s disease: self-defense or sabotage? Neural Regen Res 16(8):1552–1553. https://doi.org/10.4103/1673-5374.303016
Article PubMed PubMed Central CAS Google Scholar
Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschop MH, Horvath TL (2006) Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9(3):381–388. https://doi.org/10.1038/nn1656
Article PubMed CAS Google Scholar
Edison P, Femminella GD, Ritchie CW, Holmes C, Walker Z, Ridha BH, Raza S, Livingston NR, Nowell J, Busza G, Frangou E, Love S, Williams G, Lawrence RM, McFarlane B, Archer H, Coulthard E, Underwood B, Koranteng P, ... Ballard C (2021) Evaluation of liraglutide in the treatment of Alzheimer's disease. Alzheimer's Dement 17(S9):e057848. https://doi.org/10.1002/alz.057848
Edison P, Femminella GD, Ritchie C, Nowell J, Holmes C, Walker Z, Ridha BH, Williams G, Lawrence RM, McFarlane B (2023) MRI changes following treatment of GLP-1 analogue, liraglutide in alzheimer’s disease. Alzheimers Dement 19:e080538
Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C, Alba G, Flores-Barragán A, Sánchez-Margalet V (2022) Obesity as a risk factor for dementia and Alzheimer’s disease: the role of leptin. Int J Mol Sci 23(9):5202
Article PubMed PubMed Central CAS Google Scholar
Franklin K, Paxinos G (2008) The Mouse Brain in Stereotaxic Coordinates. Academic Press
Frost GR, Li YM (2017) The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol 7(12):170228. https://doi.org/10.1098/rsob.170228
Article PubMed PubMed Central CAS Google Scholar
Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217(2):459–472. https://doi.org/10.1083/jcb.201709069
Article PubMed PubMed Central CAS Google Scholar
Heneka M, Carson M, El Khoury J, Landreth G, Brosseron F, Feinstein D, Jacobs A, Wyss-Coray T, Vitorica J, Ransohoff R (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. https://doi.org/10.1016/s1474-4422(15)70016-5
Article PubMed PubMed Central CAS Google Scholar
Hölscher C (2024) Glucagon-like peptide-1 class drugs show clear protective effects in Parkinson’s and Alzheimer’s disease clinical trials: A revolution in the making? Neuropharmacology 253:109952. https://doi.org/10.1016/j.neuropharm.2024.109952
Article PubMed CAS Google Scholar
Holubova M, Blechova M, Kakonova A, Kunes J, Zelezna B, Maletinska L (2018) In vitro and in vivo characterization of novel stable peptidic ghrelin analogs: beneficial effects in the settings of lipopolysaccharide-induced anorexia in mice. J Pharmacol Exp Ther 366(3):422–432. https://doi.org/10.1124/jpet.118.249086
Article PubMed CAS Google Scholar
Holubová M, Hrubá L, Popelová A, Bencze M, Pražienková V, Gengler S, Kratochvílová H, Haluzík M, Železná B, Kuneš J, Hölscher C, Maletínská L (2019) Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology 144:377–387. https://doi.org/10.1016/j.neuropharm.2018.11.002
Article PubMed CAS Google Scholar
Jeong YO, Shin SJ, Park JY, Ku BK, Song JS, Kim JJ, Jeon SG, Lee SM, Moon M (2018) MK-0677, a ghrelin agonist, alleviates amyloid beta-related pathology in 5XFAD mice, an animal model of Alzheimer’s disease. Int J Mol Sci 19(6):1800. https://doi.org/10.3390/ijms19061800
Article PubMed PubMed Central CAS Google Scholar
Kacířová M, Zmeškalová A, Kořínková L, Železná B, Kuneš J, Maletínská L (2020) Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer’s disease-like pathology? Clin Sci (Lond) 134(5):547–570. https://doi.org/10.1042/cs20191313
Article PubMed CAS Google Scholar
Kacířová M, Železná B, Blažková M, Holubová M, Popelová A, Kuneš J, Šedivá B, Maletínská L (2021) Aging and high-fat diet feeding lead to peripheral insulin resistance and sex-dependent changes in brain of mouse model of tau pathology THY-Tau22. J Neuroinflammation 18(1):141. https://doi.org/10.1186/s12974-021-02190-3
Article PubMed PubMed Central CAS Google Scholar
Kashon ML, Ross GW, O’Callaghan JP, Miller DB, Petrovitch H, Burchfiel CM, Sharp DS, Markesbery WR, Davis DG, Hardman J, Nelson J, White LR (2004) Associations of cortical astrogliosis with cognitive performance and dementia status. J Alzheimers Dis 6(6):595–604. https://doi.org/10.3233/jad-2004-6604. (discussion 673-581)
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660. https://doi.org/10.1038/45230
Article PubMed CAS Google Scholar
Kumar V (2019) Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 332:16–30. https://doi.org/10.1016/j.jneuroim.2019.03.012
Comments (0)