Ahmed S, Panda SR, Kwatra M, Sahu BD, Naidu VJA (2021a) Perillyl alcohol attenuates NLRP3 inflammasome activation and rescues dopaminergic neurons in experimental in vitro and in vivo models of parkinson’s disease. ACS Chem Neurosci 13:53–68
Ahmed S, Kwatra M, Gawali B, Panda SR, Naidu VGM (2021b) Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis 26:52–70
Article PubMed CAS Google Scholar
Ahmed S, Kwatra M, Panda SR, Murty U, Naidu VGM (2021c) Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav Immun 91:142–158
Anderson FL, Biggs KE, Rankin BE, Havrda MC (2023) NLRP3 inflammasome in neurodegenerative disease. Transl Res 252:21–33
Article PubMed CAS Google Scholar
Bang Y, Lim J, Choi HJ (2021) Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson’s disease: clues to early diagnosis and effective treatment. Arch Pharm Res 44:588–604
Article PubMed PubMed Central CAS Google Scholar
Bernal-Pacheco O, Limotai N, Go CL, Fernandez HH (2012) Nonmotor manifestations in Parkinson disease. Neurol 18:1–16
Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) NI Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol 23(5):692–704
Borhani DW, Shaw DE (2012) The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des 26:15–26
Article PubMed CAS Google Scholar
Chen S, Sun B (2013) Negative regulation of NLRP3 inflammasome signaling. Protein Cell 4:251–258
Article PubMed PubMed Central CAS Google Scholar
Chen Y, Zhang Q-s, Shao Q-h, Wang S, Yuan Y-h, Chen N-h, Wang H-b (2019) NLRP3 inflammasome pathway is involved in olfactory bulb pathological alteration induced by MPTP. Acta Pharmacol Sin 40:991–998
Article PubMed PubMed Central CAS Google Scholar
Chen F, Liu W, Liu P, Wang Z, Zhou Y, Liu X, Li A (2021) α-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular–mitral synaptic transmission. NPJ Parkinson's Dis 7:114
Cheng J, Liao Y, Dong Y, Hu H, Yang N, Kong X, … Yuan Z (2020) Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy 16(12):2193–2205
Doty RL (2012) Olfaction in Parkinson’s disease and related disorders. Neurobiol Dis 46:527–552
Dzydzan O, Brodyak I, Sokół-Łętowska A, Kucharska AZ, Sybirna N (2020) Loganic acid, an iridoid glycoside extracted from Cornus mas L. fruits, reduces of carbonyl/oxidative stress biomarkers in plasma and restores antioxidant balance in leukocytes of rats with streptozotocin-induced diabetes mellitus. Life 10:349
Article PubMed PubMed Central CAS Google Scholar
El-Deeb NK, El-Tanbouly DM, Khattab MA, El-Yamany MF, Mohamed AF (2022) Crosstalk between PI3K/AKT/KLF4 signaling and microglia M1/M2 polarization as a novel mechanistic approach towards flibanserin repositioning in parkinson’s disease. Int Immunopharmacol 112:109191
Article PubMed CAS Google Scholar
El-Mansoury B, Maloui AB, Draoui A, Hamdan YA, Oukhrib M, Smimih K, Elmourid A, El Khiat A, Boulbaroud S, Meftah I (2023) Non-Motor Symptoms in Parkinson’s Disease: The Other Side of the Disease. Experimental and clinical evidence of the neuropathology of Parkinson’s Disease. IGI Global, pp 25–45
Gao M-R, Wang M, Jia Y-Y, Tian D-D, Liu A, Wang W-J, Yang L, Chen J-Y, Yang Q, Liu R (2020) Echinacoside protects dopaminergic neurons by inhibiting NLRP3/Caspase-1/IL-1β signaling pathway in MPTP-induced Parkinson’s disease model. Brain Res Bull 164:55–64
Article PubMed CAS Google Scholar
Han QQ, Le W (2023) NLRP3 inflammasome-mediated neuroinflammation and related mitochondrial impairment in Parkinson’s disease. Neurosci Bull 39(5):832–844. https://doi.org/10.1007/s12264-023-01023-y
Article PubMed PubMed Central CAS Google Scholar
Han X, Xu T, Fang Q, Zhang H, Yue L, Hu G, Sun L (2021) Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol 44:102010
Article PubMed PubMed Central CAS Google Scholar
Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK (2020) Targeting the microglial NLRP3 inflammasome and its role in Parkinson’s disease. Mov Disord 35:20–33
Article PubMed CAS Google Scholar
Huang S, Liu H, Lin Y, Liu M, Li Y, Mao H, Zhang Z, Zhang Y, Ye P, Ding L (2021) Berberine protects against NLRP3 inflammasome via ameliorating autophagic impairment in MPTP-induced Parkinson’s disease model. Front Pharmacol 11:618787
Article PubMed PubMed Central Google Scholar
Jellinger KA (2019) Is Braak staging valid for all types of Parkinson's disease?. J Neural transm (Vienna, Austria : 1996) 126(4):423–431
Jellinger K (2005) The pathology of Parkinson’s disease-recent advances. Scientific basis for the treatment of Parkinson’s disease, 2
Kwatra M, Ahmed S, Gawali B, Panda SR, Naidu VGM (2020) Hesperidin alleviates chronic restraint stress and lipopolysaccharide-induced Hippocampus and frontal cortex damage in mice: role of TLR4/NF-κB, p38 MAPK/JNK, Nrf2/ARE signaling. Neurochem Int 140:104835
Article PubMed CAS Google Scholar
Kwatra M, Ahmed S, Gangipangi VK, Panda SR, Gupta N, Shantanu P, Gawali B, Naidu VGM (2021) Lipopolysaccharide exacerbates chronic restraint stress-induced neurobehavioral deficits: mechanisms by redox imbalance, ASK1-related apoptosis, autophagic dysregulation. J Psychiatr Res 144:462–482
Lee SW, Hu YS, Hu LF, Lu Q, Dawe GS, Moore PK, Wong PTH, Bian JS (2006) Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54:116–124
Lee E, Hwang I, Park S, Hong S, Hwang B, Cho Y, Son J, Yu J-W (2019) Differentiation MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ 26:213–228
Li Y, Xia Y, Yin S, Wan F, Hu J, Kou L, Sun Y, Wu J, Zhou Q, Huang J (2021) Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson’s disease. Front Immunol 12:719807
Article PubMed PubMed Central CAS Google Scholar
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J (2024) Potential convergence of olfactory dysfunction in Parkinson’s disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 97:102288
Article PubMed CAS Google Scholar
Macchi B, Di Paola R, Marino-Merlo F, Rosa Felice M, Cuzzocrea S, Mastino AJC (2015) Inflammatory and cell death pathways in brain and peripheral blood in Parkinson’s disease. CNS Neurol Disord Drug Targets (formerly Current drug targets-CNS & neurological disorders) 14:313–324
Martin-Lopez E, Vidyadhara DJ, Liberia T, Meller SJ, Harmon LE, Hsu RM, Spence N, Brennan B, Han K, Yücel B, Chandra SS, Greer CA (2023) α-Synuclein Pathology and reduced neurogenesis in the olfactory system affect olfaction in a mouse model of Parkinson’s Disease. J Neurosci 43(6):1051–1071
Article PubMed PubMed Central CAS Google Scholar
Mustafa AM, Caprioli G, Dikmen M, Kaya E, Maggi F, Sagratini G, Vittori S, Öztürk Y (2015) Evaluation of neuritogenic activity of cultivated, wild and commercial roots of Gentiana lutea L. J Funct Foods 19:164–173
Oertel WH, Fahn S (2003) Parkinsonism. Neurological disorders. Elsevier, pp 1021–1079
Panda SR, Chaudhari VB, Ahmed S, Kwatra M, Jala A, Ponneganti S, Pawar SD, Borkar RM, Sharma P, Naidu VGM (2023) Ambient particulate matter (PM2. 5) exposure contributes to neurodegeneration through the microbiome-gut-brain axis. Therapeutic role Melatonin. Environ Toxicol Pharmacol 101:104183
Article PubMed PubMed Central CAS Google Scholar
Pant S, Singh M, Ravichandiran V, Murty USN, Srivastava HK (2021) Peptide-like and small-molecule inhibitors against Covid-19. J Biomol Struct Dyn 39(8):2904–2913
Park E, Kim J, Yeo S, Kim G, Ko EH, Lee SW, Li WY, Choi CW, Jeong SY (2018) Antiadipogenic effects of loganic acid in 3T3-L1 preadipocytes and ovariectomized mice. Molecules 23(7):1663
Park E, Lee CG, Lim E, Hwang S, Yun SH, Kim J, Jeong H, Yong Y, Yun SH, Choi CW, Jin HS, Jeong SY (2021) Osteoprotective effects of loganic acid on osteoblastic and osteoclastic cells and osteoporosis-induced mice. Int J Mol Sci 22(1):233. https://doi.org/10.3390/ijms22010233
Pike AF, Szabò I, Veerhuis R, Bubacco L (2022) The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson’s disease. npj Parkinson's Dis 8(1):32
Prakash AN, Prasad N, Puppala ER, Panda SR, Jain S, Ravichandiran V, Singh M, Naidu VGM (2023) Loganic acid protects against ulcerative colitis by inhibiting TLR4/NF-κB mediated inflammation and activating the SIRT1/Nrf2 anti-oxidant responses in-vitro and in-vivo. Int Immunopharmacol 122:110585
Article PubMed CAS Google Scholar
Rey NL, Wesson DW, Brundin P (2018) The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis 109:226–248
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MK, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA (2020) Microglia: agents of the CNS pro-inflammatory response. Cells 9:1717
Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, Palanisamy BN, Rokad D, Jin H, Anantharam V (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinson's Dis 3:30
Schrödinger Release (2023) Prime, Schrödinger. LLC, New York, 2024
Schrödinger Release 2023-4 (2023) Desmond molecular dynamics system, D. E. Shaw Research, New York, 2023. Maestro-Desmond Interoperability Tools, Schrödinger, New York
Soraci L, Gambuzza ME, Biscetti L et al (2023) JN. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson’s disease: mechanisms and therapeutic implications. J Neurol 270:1346–1360
Comments (0)