Abdelkader NF, Elbaset MA, Moustafa PE, Ibrahim SM (2022) Empagliflozin mitigates type 2 diabetes-associated peripheral neuropathy: a glucose-independent effect through AMPK signaling. Arch Pharmacal Res 45:475–493
Aguirre G, De Ita JR, De La Garza R, Castilla-Cortazar I (2016) Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 14:1–23
Al Hamed FA, Elewa H (2020) Potential therapeutic effects of sodium glucose-linked cotransporter 2 inhibitors in stroke. Clin Ther 42:e242–e249
Article PubMed CAS Google Scholar
Amutha A, Ranjit U, Anjana RM, Shanthi RCS, Rajalakshmi R, Venkatesan U, Muthukumar S, Philips R, Kayalvizhi S, Gupta PK (2021) Clinical profile and incidence of microvascular complications of childhood and adolescent onset type 1 and type 2 diabetes seen at a tertiary diabetes center in India. Pediatr Diabetes 22:67–74
Article PubMed CAS Google Scholar
An J, Nichols GA, Qian L, Munis MA, Harrison TN, Li Z, Wei R, Weiss T, Rajpathak S, Reynolds K (2021) Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. BMJ Open Diabetes Res Care 9:e001847
Article PubMed PubMed Central Google Scholar
Arab HH, Safar MM, Shahin NN (2021) Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced parkinson’s disease rat model. ACS Chem Neurosci 12:689–703
Article PubMed CAS Google Scholar
Arab HH, Eid AH, Alsufyani SE, Ashour AM, El-Sheikh AAK, Darwish HW, Sabry FM (2023) Targeting autophagy, apoptosis, and oxidative perturbations with dapagliflozin mitigates cadmium-induced cognitive dysfunction in rats. In: Biomedicines 11:3000
Arjunan A, Sah DK, Woo M, Song J (2023) Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 13:16
Article PubMed PubMed Central CAS Google Scholar
Aronson R, Chu L, Joseph N, Brown R (2021) Prevalence and risk evaluation of diabetic complications of the foot among Adults with type 1 and type 2 diabetes in a Large Canadian population (PEDAL study). Can J Diabetes 45:588–593
Arow M, Waldman M, Yadin D, Nudelman V, Shainberg A, Abraham NG, Freimark D, Kornowski R, Aravot D, Hochhauser E, Arad M (2020) Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol 19:7
Article PubMed PubMed Central CAS Google Scholar
Ar’Rajab A, AhréN B (1993) Long-term diabetogenic effect of streptozotocin in rats. Pancreas 8:50–57
Article PubMed CAS Google Scholar
Arunachalam K, Parimelazhagan T (2013) Antidiabetic activity of Ficus amplissima Smith. bark extract in streptozotocin induced diabetic rats. J Ethnopharmacol 147:302–310
Ayoub BM, Michel HE, Mowaka S, Hendy MS, Tadros MM (2021) Repurposing of omarigliptin as a neuroprotective agent based on docking with A2A adenosine and AChE receptors, brain GLP-1 response and its brain/plasma concentration ratio after 28 days multiple doses in rats using LC-MS/MS. Molecules 26:889
Article PubMed PubMed Central CAS Google Scholar
Beletskiy A, Chesnokova E, Bal N (2021) Insulin-like growth factor 2 as a possible neuroprotective agent and memory enhancer-its comparative expression, processing and signaling in Mammalian CNS. Int J Mol Sci 22:1849
Article PubMed PubMed Central CAS Google Scholar
Bondy CA, Cheng CM (2004) Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 490:25–31
Article PubMed CAS Google Scholar
Bonora BM, Avogaro A, Fadini GP (2020) Extraglycemic effects of SGLT2 inhibitors: a review of the evidence. Diabetes Metab Syndrome Obes 13:161–174
Cignarella A, Peterson CD (2024) Mechanistic chronopharmacology: preclinical modeling of an SGLT2 inhibitor in preventing painful diabetic neuropathy. J Pharmacol Exp Ther 390:174–176
Article PubMed CAS Google Scholar
Courteix C, Eschalier A, Lavarenne J (1993) Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53:81–88
Article PubMed CAS Google Scholar
Dabelea D, Stafford JM, Mayer-Davis EJ, D’Agostino R, Dolan L, Imperatore G, Linder B, Lawrence JM, Marcovina SM, Mottl AK (2017) Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA 317:825–835
Article PubMed PubMed Central Google Scholar
Deuis JR, Dvorakova LS, Vetter I (2017) Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci 10:284
Article PubMed PubMed Central Google Scholar
Dhoj TS, Raj KS, Santosh G, Deepika G (2017) Dyslipidemia in type 2 diabetes mellitus. J Pathol Nepal 7:1149–1154
El Medany AMH, Hammadi SHM, Khalifa HM, Ghazala RA, Zakaria Mohammed HS (2022) The vascular impact of dapagliflozin, liraglutide, and atorvastatin alone or in combinations in type 2 diabetic rat model. Fundam Clin Pharmacol 36:731–741
El-Haggar SM, Hafez YM, El Sharkawy AM, Khalifa M (2024) Effect of empagliflozin in peripheral diabetic neuropathy of patients with type 2 diabetes mellitus. Med Clin 163:53–61
Elkholy SE, Elaidy SM, El-Sherbeeny NA, Toraih EA, El-Gawly HW (2020) Neuroprotective effects of ranolazine versus pioglitazone in experimental diabetic neuropathy: Targeting Nav1.7 channels and PPAR-γ. Life Sci 250:117557
Article PubMed CAS Google Scholar
El-Safty H, Ismail A, Abdelsalam RM, El-Sahar AE, Saad MA (2022) Dapagliflozin diminishes memory and cognition impairment in Streptozotocin induced diabetes through its effect on Wnt/β-Catenin and CREB pathway. Brain Res Bull 181:109–120
Article PubMed CAS Google Scholar
El-Sahar AE, Rastanawi AA, El-Yamany MF, Saad MA (2020) Dapagliflozin improves behavioral dysfunction of Huntington’s disease in rats via inhibiting apoptosis-related glycolysis. Life Sci 257:118076
Article PubMed CAS Google Scholar
El-Sayed N, Mostafa YM, AboGresha NM, Ahmed AAM, Mahmoud IZ, El-Sayed NM (2021) Dapagliflozin attenuates diabetic cardiomyopathy through erythropoietin up-regulation of AKT/JAK/MAPK pathways in streptozotocin-induced diabetic rats. Chem Biol Interact 347:109617
Article PubMed CAS Google Scholar
Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S (2001) Relative importance of transport and alkylation for pancreatic ??-cell toxicity of streptozotocin. Diabetologia 43:1528–1533
Erdogan MA, Yusuf D, Christy J, Solmaz V, Erdogan A, Taskiran E, Erbas O (2018) Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol 18:1–8
Friedrich N, Thuesen B, Jørgensen T, Juul A, Spielhagen C, Wallaschofksi H, Linneberg A (2012) The association between IGF-I and insulin resistance: a general population study in Danish adults. Diabetes Care 35:768–773
Article PubMed PubMed Central CAS Google Scholar
Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M, Di Salvo J, Epifani R, Piacevole A, Tagliaferri G (2023) Peripheral neuropathy in diabetes mellitus: Pathogenetic mechanisms and diagnostic options. Int J Mol Sci 24:3554
Article PubMed PubMed Central CAS Google Scholar
Ghasemi A, Jeddi S (2023) Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. Excli J 22:274
Comments (0)