Dapagliflozin Ameliorate Type-2 Diabetes Associated Neuropathy via Regulation of IGF-1R Signaling

Abdelkader NF, Elbaset MA, Moustafa PE, Ibrahim SM (2022) Empagliflozin mitigates type 2 diabetes-associated peripheral neuropathy: a glucose-independent effect through AMPK signaling. Arch Pharmacal Res 45:475–493

Article  CAS  Google Scholar 

Aguirre G, De Ita JR, De La Garza R, Castilla-Cortazar I (2016) Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 14:1–23

Article  Google Scholar 

Al Hamed FA, Elewa H (2020) Potential therapeutic effects of sodium glucose-linked cotransporter 2 inhibitors in stroke. Clin Ther 42:e242–e249

Article  PubMed  CAS  Google Scholar 

Amutha A, Ranjit U, Anjana RM, Shanthi RCS, Rajalakshmi R, Venkatesan U, Muthukumar S, Philips R, Kayalvizhi S, Gupta PK (2021) Clinical profile and incidence of microvascular complications of childhood and adolescent onset type 1 and type 2 diabetes seen at a tertiary diabetes center in India. Pediatr Diabetes 22:67–74

Article  PubMed  CAS  Google Scholar 

An J, Nichols GA, Qian L, Munis MA, Harrison TN, Li Z, Wei R, Weiss T, Rajpathak S, Reynolds K (2021) Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. BMJ Open Diabetes Res Care 9:e001847

Article  PubMed  PubMed Central  Google Scholar 

Arab HH, Safar MM, Shahin NN (2021) Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced parkinson’s disease rat model. ACS Chem Neurosci 12:689–703

Article  PubMed  CAS  Google Scholar 

Arab HH, Eid AH, Alsufyani SE, Ashour AM, El-Sheikh AAK, Darwish HW, Sabry FM (2023) Targeting autophagy, apoptosis, and oxidative perturbations with dapagliflozin mitigates cadmium-induced cognitive dysfunction in rats. In: Biomedicines 11:3000

CAS  Google Scholar 

Arjunan A, Sah DK, Woo M, Song J (2023) Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 13:16

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aronson R, Chu L, Joseph N, Brown R (2021) Prevalence and risk evaluation of diabetic complications of the foot among Adults with type 1 and type 2 diabetes in a Large Canadian population (PEDAL study). Can J Diabetes 45:588–593

Article  PubMed  Google Scholar 

Arow M, Waldman M, Yadin D, Nudelman V, Shainberg A, Abraham NG, Freimark D, Kornowski R, Aravot D, Hochhauser E, Arad M (2020) Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol 19:7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ar’Rajab A, AhréN B (1993) Long-term diabetogenic effect of streptozotocin in rats. Pancreas 8:50–57

Article  PubMed  CAS  Google Scholar 

Arunachalam K, Parimelazhagan T (2013) Antidiabetic activity of Ficus amplissima Smith. bark extract in streptozotocin induced diabetic rats. J Ethnopharmacol 147:302–310

Article  PubMed  Google Scholar 

Ayoub BM, Michel HE, Mowaka S, Hendy MS, Tadros MM (2021) Repurposing of omarigliptin as a neuroprotective agent based on docking with A2A adenosine and AChE receptors, brain GLP-1 response and its brain/plasma concentration ratio after 28 days multiple doses in rats using LC-MS/MS. Molecules 26:889

Article  PubMed  PubMed Central  CAS  Google Scholar 

Beletskiy A, Chesnokova E, Bal N (2021) Insulin-like growth factor 2 as a possible neuroprotective agent and memory enhancer-its comparative expression, processing and signaling in Mammalian CNS. Int J Mol Sci 22:1849

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bondy CA, Cheng CM (2004) Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 490:25–31

Article  PubMed  CAS  Google Scholar 

Bonora BM, Avogaro A, Fadini GP (2020) Extraglycemic effects of SGLT2 inhibitors: a review of the evidence. Diabetes Metab Syndrome Obes 13:161–174

Article  CAS  Google Scholar 

Cignarella A, Peterson CD (2024) Mechanistic chronopharmacology: preclinical modeling of an SGLT2 inhibitor in preventing painful diabetic neuropathy. J Pharmacol Exp Ther 390:174–176

Article  PubMed  CAS  Google Scholar 

Courteix C, Eschalier A, Lavarenne J (1993) Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53:81–88

Article  PubMed  CAS  Google Scholar 

Dabelea D, Stafford JM, Mayer-Davis EJ, D’Agostino R, Dolan L, Imperatore G, Linder B, Lawrence JM, Marcovina SM, Mottl AK (2017) Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA 317:825–835

Article  PubMed  PubMed Central  Google Scholar 

Deuis JR, Dvorakova LS, Vetter I (2017) Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci 10:284

Article  PubMed  PubMed Central  Google Scholar 

Dhoj TS, Raj KS, Santosh G, Deepika G (2017) Dyslipidemia in type 2 diabetes mellitus. J Pathol Nepal 7:1149–1154

Article  Google Scholar 

El Medany AMH, Hammadi SHM, Khalifa HM, Ghazala RA, Zakaria Mohammed HS (2022) The vascular impact of dapagliflozin, liraglutide, and atorvastatin alone or in combinations in type 2 diabetic rat model. Fundam Clin Pharmacol 36:731–741

Article  PubMed  Google Scholar 

El-Haggar SM, Hafez YM, El Sharkawy AM, Khalifa M (2024) Effect of empagliflozin in peripheral diabetic neuropathy of patients with type 2 diabetes mellitus. Med Clin 163:53–61

Article  CAS  Google Scholar 

Elkholy SE, Elaidy SM, El-Sherbeeny NA, Toraih EA, El-Gawly HW (2020) Neuroprotective effects of ranolazine versus pioglitazone in experimental diabetic neuropathy: Targeting Nav1.7 channels and PPAR-γ. Life Sci 250:117557

Article  PubMed  CAS  Google Scholar 

El-Safty H, Ismail A, Abdelsalam RM, El-Sahar AE, Saad MA (2022) Dapagliflozin diminishes memory and cognition impairment in Streptozotocin induced diabetes through its effect on Wnt/β-Catenin and CREB pathway. Brain Res Bull 181:109–120

Article  PubMed  CAS  Google Scholar 

El-Sahar AE, Rastanawi AA, El-Yamany MF, Saad MA (2020) Dapagliflozin improves behavioral dysfunction of Huntington’s disease in rats via inhibiting apoptosis-related glycolysis. Life Sci 257:118076

Article  PubMed  CAS  Google Scholar 

El-Sayed N, Mostafa YM, AboGresha NM, Ahmed AAM, Mahmoud IZ, El-Sayed NM (2021) Dapagliflozin attenuates diabetic cardiomyopathy through erythropoietin up-regulation of AKT/JAK/MAPK pathways in streptozotocin-induced diabetic rats. Chem Biol Interact 347:109617

Article  PubMed  CAS  Google Scholar 

Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S (2001) Relative importance of transport and alkylation for pancreatic ??-cell toxicity of streptozotocin. Diabetologia 43:1528–1533

Article  Google Scholar 

Erdogan MA, Yusuf D, Christy J, Solmaz V, Erdogan A, Taskiran E, Erbas O (2018) Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol 18:1–8

Article  Google Scholar 

Friedrich N, Thuesen B, Jørgensen T, Juul A, Spielhagen C, Wallaschofksi H, Linneberg A (2012) The association between IGF-I and insulin resistance: a general population study in Danish adults. Diabetes Care 35:768–773

Article  PubMed  PubMed Central  CAS  Google Scholar 

Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M, Di Salvo J, Epifani R, Piacevole A, Tagliaferri G (2023) Peripheral neuropathy in diabetes mellitus: Pathogenetic mechanisms and diagnostic options. Int J Mol Sci 24:3554

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ghasemi A, Jeddi S (2023) Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. Excli J 22:274

PubMed  PubMed Central 

Comments (0)

No login
gif