Al-Beltagi M (2021) Autism medical comorbidities. World J Clin Pediatrics 10(3):15–28. https://doi.org/10.5409/wjcp.v10.i3.15
Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schafer B, Hirsch-Ernst KI et al (2018) Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res 62(1):1700447. https://doi.org/10.1002/mnfr.201700447
Arroyo-Brusé A, Brusés JL (2012) Maternal immune activation by poly induces expression of cytokines IL-1β, IL-13, chemokine MCP-1, and colony stimulating factor VEGF in fetal mouse brain. J Neuroinflammation 9:83. https://doi.org/10.1186/1742-2094-9-83
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25(1):40–45. https://doi.org/10.1016/j.bbi.2010.08.003
Article CAS PubMed Google Scholar
Azman KF, Zakaria R (2022) Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int J Mol Sci 23(12):6827. https://doi.org/10.3390/ijms23126827
Article CAS PubMed PubMed Central Google Scholar
Bhat IUH, Bhat R (2021) Quercetin: A bioactive compound imparting cardiovascular and neuroprotective benefits: Scope for exploring fresh produce, their wastes, and by-products. Biology 10:586. https://doi.org/10.3390/biology10070586
Article CAS PubMed PubMed Central Google Scholar
Bokobza C, Steenwinckel JV, Mani S, Mezger V, Fleiss B, Gressens P (2019) Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr Res 85:155–165. https://doi.org/10.1038/s41390-018-0208-4
Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: From antioxidant to nutraceutical. Eur J Pharmacol 585(2–3):325–337. https://doi.org/10.1016/j.ejphar.2008.03.008
Article CAS PubMed Google Scholar
Bose R, Posada-Pérez M, Karvela E, Skandik M, Keane L, Falk A, Spulber S, Joseph B, Ceccatelli S (2025) Bi-allelic NRXN1α deletion in microglia derived from iPSC of an autistic patient increases interleukin-6 production and impairs supporting function on neuronal networking. Brain Behav Immun 123:28–42. https://doi.org/10.1016/j.bbi.2024.09.001
Article CAS PubMed Google Scholar
Brigida AL, Schultz S, Cascone M, Antonucci N, Siniscalco D (2017) Endocannabinoid signal dysregulation in autism spectrum disorders: A correlation link between inflammatory state and neuro-immune alterations. Int J Mol Sci 18(7):1425. https://doi.org/10.3390/ijms18071425
Article CAS PubMed PubMed Central Google Scholar
Carmo de Carvalho e Martins MD, Martins, da Silva Santos Oliveira AS, da Silva LA, Primo MG, de Carvalho Lira VB (2022) Biological indicators of oxidative stress [malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase] and their application in nutrition. InBiomarkers in Nutrition (pp. 1-25). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-07389-2_49.
Chang CJ, Mulholland DJ, Valamehr B, Mosessian S, Sellers WR, Wu H (2008) PTEN nuclear localization is regulated by oxidative stress and mediates p53-dependent tumor suppression. Mol Cell Biol 28(10):3281–3289. https://doi.org/10.1128/MCB.00310-08
Article CAS PubMed PubMed Central Google Scholar
Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13(3):171–181. https://doi.org/10.1016/j.pathophys.2006.05.007
Article CAS PubMed Google Scholar
Chen L, Shi XJ, Liu H, Mao X, Gui LN, Wang H et al (2021) Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies. Transl Psychiatry 11:15. https://doi.org/10.1038/s41398-020-01135-3
Article CAS PubMed PubMed Central Google Scholar
Cialdella-Kam L, Nieman DC, Sha W, Meaney MP, Knab AM, Shanely RA (2013) Dose-response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults. Br J Nutr 109(11):1923–1933. https://doi.org/10.1017/S0007114512003972
Article CAS PubMed Google Scholar
D’Andrea G (2015) Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 106:256–271. https://doi.org/10.1016/j.fitote.2015.09.018
Article CAS PubMed Google Scholar
De Mattos BDS, Soares MSP, Spohr L, Pedra NS, Teixeira FC, de Souza AA et al (2020a) Quercetin prevents alterations of behavioral parameters, delta-aminolevulinic dehydratase activity, and oxidative damage in brain of rats in a prenatal model of autism. Int J Dev Neurosci 80:287–302. https://doi.org/10.1002/jdn.10025
Article CAS PubMed Google Scholar
Doğan M, Albayrak Y, Erbaş O (2023) Torasemide improves the propionic acid-induced Autism in rats. Alpha Psychiatry 24(1):22–31. https://doi.org/10.5152/alphapsychiatry.2023.22975
Article CAS PubMed PubMed Central Google Scholar
Du Y, Chen L, Yan MC, Wang YL, Zhong XL, Xv CX, Cheng Y (2023) Neurometabolite levels in the brains of patients with autism spectrum disorders: A meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry 28(7):3092–3103
Article CAS PubMed Google Scholar
Erbaş O, Sarac F, Aktuğ H, Peker G (2014) Detection of impaired cognitive function in rat with hepatosteatosis model and improving effect of GLP-1 analogs (exenatide) on cognitive function in hepatosteatosis. Sci World J 2014:946265. https://doi.org/10.1155/2014/946265
Erbas O, Erdogan MA, Khalilnezhad A, Gürkan FT, Yiğittürk G, Meral A (2018) Neurobehavioral effects of long-term maternal fructose intake in rat offspring. Int J Dev Neurosci 69:68–79. https://doi.org/10.1016/j.ijdevneu.2018.07.001
Article CAS PubMed Google Scholar
Eve M, Gandawijaya J, Yang L, Oguro-Ando A (2022) Neuronal cell adhesion molecules may mediate neuroinflammation in autism spectrum disorder. Front Psych 13:842755. https://doi.org/10.3389/fpsyt.2022.842755
Heinz SA, Henson DA, Nieman DC, Austin MD, Jin F (2010) A 12-week supplementation with quercetin does not affect natural killer cell activity, granulocyte oxidative burst activity, or granulocyte phagocytosis in female human subjects. Br J Nutr 104(6):849–857. https://doi.org/10.1017/S000711451000156X
Article CAS PubMed Google Scholar
Hosny SA, Abdelmenem AM, Azouz T, Kamar SS, ShamsEldeen AM, El-Shafei AA (2023) Beneficial Effect of Erythropoietin on Ameliorating Propionic Acid-Induced Autistic-Like Features in Young Rats. Acta Histochemica et Cytochemica 56(5):77–86. https://doi.org/10.1267/ahc.23-00027
Hu Z, Xiao X, Zhang Z, Li M (2019) Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Mol Psychiatry 24(10):1400–1414. https://doi.org/10.1038/s41380-019-0438-9
Huang EJ, Reichardt LF (2001) Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 24(1):677–736. https://doi.org/10.1146/annurev.neuro.24.1.677
Article CAS PubMed PubMed Central Google Scholar
Jang WE, Park JH, Park G, Bang G, Na CH, Kim JY, Kim KY, Kim KP, Shin CY, An JY, Lee YS, Kim MS (2023) Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol Psychiatry 28(2):810–821. https://doi.org/10.1038/s41380-022-01822-1
Article CAS PubMed Google Scholar
Jia FF, Tan ZR, McLeod HL, Chen Y, Ou-Yang DS, Zhou HH (2016) Effects of quercetin on pharmacokinetics of cefprozil in Chinese-Han male volunteers. Xenobiotica 46(10):896–900. https://doi.org/10.3109/00498254.2015.1132792
Article CAS PubMed Google Scholar
Karhu E, Zukerman R, Eshraghi RS, Mittal J, Deth RC, Castejon AM et al (2019) Nutritional interventions for autism spectrum disorder. Nutr Rev 78(6):515–531. https://doi.org/10.1093/nutrit/nuz092
Comments (0)