Red-light LED therapy promotes wound regeneration by upregulating COL1A1, COL2A1, VEGF and reducing IL-1β for anti-inflammation

Gilaberte Y, Prieto-Torres L, Pastushenko I, Juarranz Á (2016) Anatomy and function of the skin. in Nanoscience in dermatology. Elsevier, pp 1–14. https://doi.org/10.1016/B978-0-12-802926-8.00001-X.

Tobin DJ (2006) Biochemistry of human skin—our brain on the outside. Chem Soc Rev 35(1):52–67. https://doi.org/10.1039/B505793K

Article  CAS  PubMed  Google Scholar 

Cañedo-Dorantes L, Cañedo-Ayala M (2019) Skin Acute Wound Healing: A Comprehensive Review, Int. J. Inflam. vol. pp. 1–15, Jun. 2019. https://doi.org/10.1155/2019/3706315

Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U (2017) Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res 58:1–2. https://doi.org/10.1159/000454919

Article  Google Scholar 

Grossweiner LI (2005) The science of phototherapy: an introduction. Springer-, Berlin/Heidelberg. https://doi.org/10.1007/1-4020-2885-7

Book  Google Scholar 

Wu S, Xing D (Jan. 2014) Intracellular signaling cascades following light irradiation. Laser Photon Rev 8(1):115–130. https://doi.org/10.1002/lpor.201300015

Lanzafame RJ, Blanche RR, Bodian AB, Chiacchierini RP, Fernandez-Obregon A, Kazmirek ER (2013) The growth of human scalp hair mediated by visible red light laser and LED sources in males, Lasers Surg. Med. vol. 45, no. 8, pp. 487–495, Oct. https://doi.org/10.1002/lsm.22173

Umeda M, Tsuno A, Okagami Y, Tsuchiya F, Izumi Y, Ishikawa I (2011) Bactericidal effects of a high-power, red light‐emitting diode on two periodontopathic bacteria in antimicrobial photodynamic therapy in vitro, J. Investig. Clin. Dent. vol. 2, no. 4, pp. 268–274, Nov. https://doi.org/10.1111/j.2041-1626.2011.00071.x

Yamauchi N, Taguchi Y, Kato H, Umeda M (2018) High-power, red‐light‐emitting diode irradiation enhances proliferation, osteogenic differentiation, and mineralization of human periodontal ligament stem cells via ERK signaling pathway, J. Periodontol. vol. 89, no. 3, pp. 351–360, Mar. https://doi.org/10.1002/JPER.17-0365

dos Santos Ferreira F, Cadoná FC, Aurélio AR, de Martins TN, Pivetta HMF (2022) Photobiomodulation-blue and red LED: protection or cellular toxicity? In vitro study with human fibroblasts, Lasers Med. Sci. vol. 37, no. 1, pp. 523–530, Feb. https://doi.org/10.1007/s10103-021-03290-5

de Sousa APC et al (2010) Effect of LED Phototherapy of Three Distinct Wavelengths on Fibroblasts on Wound Healing: A Histological Study in a Rodent Model, Photomed. Laser Surg. vol. 28, no. 4, pp. 547–552, Aug. https://doi.org/10.1089/pho.2009.2605

Oyebode O, Houreld NN, Abrahamse H (2021) Photobiomodulation in diabetic wound healing: A review of red and near-infrared wavelength applications, Cell Biochem. Funct. vol. 39, no. 5, pp. 596–612, Jul. https://doi.org/10.1002/cbf.3629

Baracho VdaS, de Chaves ME, Huebner R, Oliveira MX, Ferreira PH, Lucas TC (2021) Phototherapy (cluster multi-diode 630 nm and 940 nm) on the healing of pressure injury: A pilot study, J. Vasc. Nurs. vol. 39, no. 3, pp. 67–75, Sep. https://doi.org/10.1016/j.jvn.2021.06.002

Kim HK et al (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells, Lasers Med. Sci. vol. 24, no. 2, pp. 214–222, Mar. https://doi.org/10.1007/s10103-008-0550-6

Sorbellini E, Rucco M, Rinaldi F (2018) Photodynamic and Photobiological effects of light-emitting diode (LED) therapy in dermatological disease: an update. Lasers Med Sci 33(7):1431–1439. https://doi.org/10.1007/s10103-018-2584-8

Article  PubMed  PubMed Central  Google Scholar 

Preetam S et al (2024) Electrical stimulation: a novel therapeutic strategy to heal biological wounds. RSC Adv 14(44):32142–32173. https://doi.org/10.1039/D4RA04258A

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Chaves ME, de Araújo AR, Piancastelli ACC, Pinotti M (Jul. 2014) Effects of low-power light therapy on wound healing: LASER X LED. Bras Dermatol 89(4):616–623. https://doi.org/10.1590/abd1806-4841.20142519

Hamblin MR (2019) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212. https://doi.org/10.1111/php.12864

Article  CAS  Google Scholar 

Mallidi S, Anbil S, Bulin A, Obaid G, Ichikawa M (2016) Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Thernostics 6(13). https://doi.org/10.7150/thno.16183

Farhangniya M, Mohamadi Farsani F, Salehi N, Samadikuchaksaraei A (2023) Integrated Bioinformatic Analysis of Differentially Expressed Genes Associated with Wound Healing. Cell J. vol. 25, no. 12, pp. 874–882, Dec. https://doi.org/10.22074/cellj.2023.2007217.1368

Zhang Z, Wang L, Li X, Miao Y, Li D (2024) Integrating Network Pharmacology, Molecular Docking and Experimental Validation to Explore the Pharmacological Mechanisms of Quercetin Against Diabetic Wound, Int. J. Med. Sci. vol. 21, no. 14, pp. 2837–2850, Oct. https://doi.org/10.7150/ijms.100468

Krzyszczyk P, Schloss R, Palmer A, Berthiaume F (2018) The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes, Front. Physiol. vol. 9, no. MAY, pp. 1–22, May https://doi.org/10.3389/fphys.2018.00419

Silveira PCL et al (Aug. 2016) Effect of Low-Power laser (LPL) and Light-Emitting diode (LED) on inflammatory response in burn wound healing. Inflammation 39(4):1395–1404. https://doi.org/10.1007/s10753-016-0371-x

Fushimi T, Inui S, Nakajima T, Ogasawara M, Hosokawa K, Itami S (2012) Green light emitting diodes accelerate wound healing: Characterization of the effect and its molecular basis in vitro and in vivo, Wound Repair Regen. vol. 20, no. 2, pp. 226–235, Mar. https://doi.org/10.1111/j.1524-475X.2012.00771.x

Deng F et al (Oct. 2024) Visible light accelerates skin wound healing and alleviates Scar formation in mice by adjusting STAT3 signaling. Commun Biol 7(1):1266. https://doi.org/10.1038/s42003-024-06973-1

Xie H, Wang Z, Wang R, Chen Q, Yu A, Lu A (Sep. 2024) Self-Healing, injectable hydrogel dressing for monitoring and therapy of diabetic wound. Adv Funct Mater 34(36). https://doi.org/10.1002/adfm.202401209

He L et al (2024) Multifunctional dynamic chitosan-guar gum nanocomposite hydrogels in infection and diabetic wound healing, Carbohydr. Polym. vol. 354, no. November p. 123316, Apr. 2025. https://doi.org/10.1016/j.carbpol.2025.123316

Comments (0)

No login
gif