Anders JJ, Arany PR, Baxter GD, Lanzafame RJ (2019) Light-Emitting diode therapy and Low-Level light therapy are photobiomodulation therapy. Photobiomodul Photomed Laser Surg 37(2):63–65. https://doi.org/10.1089/photob.2018.4600
Ferraresi C, Kaippert B, Avci P, Huang YY, de Sousa MV, Bagnato VS, Parizotto NA, Hamblin MR (2015) Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol 91(2):411–416. https://doi.org/10.1111/php.12397
de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or Low-Level light therapy. IEEE journal of selected topics in quantum electronics: a publication of the IEEE lasers and Electro-optics society. 22(3). https://doi.org/10.1109/JSTQE.2016.2561201
Ferraresi C, de Sousa MV, Huang YY, Bagnato VS, Parizotto NA, Hamblin MR (2015) Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers Med Sci 30(4):1259–1267. https://doi.org/10.1007/s10103-015-1723-8
Kashiwagi S, Morita A, Yokomizo S, Ogawa E, Komai E, Huang PL, Bragin DE, Atochin DN (2023) Photobiomodulation and nitric oxide signaling. Nitric Oxide 130:58–68. https://doi.org/10.1016/j.niox.2022.11.005
Poyton RO, Ball KA (2011) Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome C oxidase. Discov Med 11(57):154–159
Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540. https://doi.org/10.1038/srep30540
Article PubMed PubMed Central Google Scholar
Linares SN, Beltrame T, Ferraresi C, Galdino GAM, Catai AM (2020) Photobiomodulation effect on local hemoglobin concentration assessed by near-infrared spectroscopy in humans. Lasers Med Sci 35(3):641–649. https://doi.org/10.1007/s10103-019-02861-x
Ferlito JV, Ferlito MV, Leal-Junior ECP, Tomazoni SS, De Marchi T (2022) Comparison between cryotherapy and photobiomodulation in muscle recovery: a systematic review and meta-analysis. Lasers Med Sci 37(3):1375–1388. https://doi.org/10.1007/s10103-021-03442-7
Leal-Junior ECP, Lopes-Martins RAB, Bjordal JM (2019) Clinical and scientific recommendations for the use of photobiomodulation therapy in exercise performance enhancement and post-exercise recovery: current evidence and future directions. Braz J Phys Ther 23(1):71–75. https://doi.org/10.1016/j.bjpt.2018.12.002
Vanin AA, Verhagen E, Barboza SD, Costa LOP, Leal-Junior ECP (2018) Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers Med Sci 33(1):181–214. https://doi.org/10.1007/s10103-017-2368-6
Deschenes MR, Kraemer WJ (2002) Performance and physiologic adaptations to resistance training. Am J Phys Med Rehabil 81(11 Suppl):S3–16. https://doi.org/10.1097/00002060-200211001-00003
Schoenfeld BJ, Grgic J, Van Every DW, Plotkin DL (2021) Loading recommendations for muscle strength, hypertrophy, and local endurance: A Re-Examination of the repetition continuum. Sports (Basel) 9(2). https://doi.org/10.3390/sports9020032
Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26(5):419–424. https://doi.org/10.1089/pho.2007.2160
Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 Nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431. https://doi.org/10.1007/s10103-008-0592-9
Hemmings TJ, Kendall KL, Dobson JL (2017) Identifying dosage effect of Light-Emitting diode therapy on muscular fatigue in quadriceps. J Strength Cond Res 31(2):395–402. https://doi.org/10.1519/jsc.0000000000001523
Ferreira Junior A, Schamne JC, de Moraes SMF, Okuno NM (2018) Cardiac autonomic responses and number of repetitions maximum after LED irradiation in the ipsilateral and contralateral lower limb. Lasers Med Sci 33(2):353–359. https://doi.org/10.1007/s10103-017-2391-7
Higashi RH, Toma RL, Tucci HT, Pedroni CR, Ferreira PD, Baldini G, Aveiro MC, Borghi-Silva A, de Oliveira AS, Renno AC (2013) Effects of low-level laser therapy on biceps braquialis muscle fatigue in young women. Photomed Laser Surg 31(12):586–594. https://doi.org/10.1089/pho.2012.3388
Cabreira LMB, Merlo JK, Jacinto JL, Nunes JP, Ribeiro AS, Aguiar AF (2022) Photobiomodulation therapy with light-emitting diode does not improve lower-body muscle performance and delayed-onset muscle soreness in resistance-trained women: A randomized, controlled, crossover trial. Sci Sports 37(7):635. https://doi.org/10.1016/j.scispo.2021.06.006
Azuma RHE, Merlo JK, Jacinto JL, Borim JM, da Silva RA, Pacagnelli FL, Nunes JP, Ribeiro AS, Aguiar AF (2021) Photobiomodulation therapy at 808 Nm does not improve biceps brachii performance to exhaustion and Delayed-Onset muscle soreness in young adult women: A randomized, controlled, crossover trial. Front Physiol 12:664582. https://doi.org/10.3389/fphys.2021.664582
Article PubMed PubMed Central Google Scholar
Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30(2):925–939. https://doi.org/10.1007/s10103-013-1465-4
Dutra YM, Malta ES, Elias AS, Broatch JR, Zagatto AM (2022) Deconstructing the ergogenic effects of photobiomodulation: A systematic review and Meta-analysis of its efficacy in improving Mode-Specific exercise performance in humans. Sports Med 52(11):2733–2757. https://doi.org/10.1007/s40279-022-01714-y
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2024) Cochrane Handbook for Systematic Reviews of Interventions version 6.5 (updated August 2024). Available online at: www.training.cochrane.org/handbook. Accessed September 30, 2024
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2022) [The PRISMA 2020 statement: an updated guideline for reporting systematic reviewsDeclaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas]. Revista panamericana de salud publica = Pan American journal of public health 46:e112. https://doi.org/10.26633/rpsp.2022.112
Methley AM, Campbell S, Chew-Graham C, McNally R, Cheraghi-Sohi S (2014) PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res 14:579. https://doi.org/10.1186/s12913-014-0579-0
Article PubMed PubMed Central Google Scholar
Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898
Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, DeBeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, Schünemann HJ (2011) GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64(4):383–394. https://doi.org/10.1016/j.jclinepi.2010.04.026
Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. routledge, New York
Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463. https://doi.org/10.1111/j.0006-341x.2000.00455.x
Dos Reis FA, da Silva BA, Laraia EM, de Melo RM, Silva PH, Leal-Junior EC, de Carvalho Pde T (2014) Effects of pre- or post-exercise low-level laser therapy (830 nm) on skeletal muscle fatigue and biochemical markers of recovery in humans: double-blind placebo-controlled trial. Photomed Laser Surg 32(2):106–112. https://doi.org/10.1089/pho.2013.3617
Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41(8):572–577. https://doi.org/10.1002/lsm.20810
Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls Corsetti F, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532. https://doi.org/10.2519/jospt.2010.3294
Abedi Yekta AH, Tabeii F, Salehi S, Sohrabi M-R, Poursaeidesfahani M, Hassabi M, Hazegh N, Mahdaviani B (2021) Effect of Low-Level laser therapy on muscle strength and endurance and Post-Exercise recovery of young adult: A Double-Blind, Placebo-Controlled, rand
Comments (0)