Nazir, M., Shakil, S., Khurshid, K.: Role of deep learning in brain tumor detection and classification (2015 to 2020): A review. Computerized Medical Imaging and Graphics 91, 101940 (2021). https://doi.org/10.1016/j.compmedimag.2021.101940
Zahin Muntaqim, M., Amir Smrity, T., Saleh Musa Miah, A., Muhammad Kafi, H., Tamanna, T., Farid, F.A., Abdur Rahim, M., Abdul Karim, H., Mansor, S.: Eye disease detection enhancement using a multi-stage deep learning approach. IEEE Access 12, 191393–191407 (2024). https://doi.org/10.1109/ACCESS.2024.3476412
Mammen, P.M.: Federated Learning: Opportunities and Challenges (2021). arXiv:2101.05428
McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-Efficient Learning of Deep Networks from Decentralized Data (2023). arXiv:1602.05629
Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450 (2020)
Khan, M.A., Ashraf, I., Alhaisoni, M., Damaševičius, R., Scherer, R., Rehman, A., Bukhari, S.A.C.: Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists. Diagnostics 10(8), 565 (2020)
PubMed PubMed Central Google Scholar
Amin, J., Sharif, M., Gul, N., Yasmin, M., Shad, S.A.: Brain tumor classification based on dwt fusion of mri sequences using convolutional neural network. Pattern Recognition Letters 129, 115–122 (2020)
Sharif, M., Tanvir, U., Munir, E.U., Khan, M.A., Yasmin, M.: Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection. Journal of Ambient Intelligence and Humanized Computing, 1–20 (2018)
Rehman, A., Naz, S., Razzak, M.I., Akram, F., Imran, M.: A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits, Systems, and Signal Processing 39(2), 757–775 (2020)
Ismael, M.R., Abdel-Qader, I.: Brain tumor classification via statistical features and back-propagation neural network. In: 2018 IEEE International Conference on Electro/Information Technology (EIT), pp. 0252–0257 (2018). IEEE
Aggarwal, M., Khullar, V., Goyal, N., Alammari, A., Albahar, M.A., Singh, A.: Lightweight federated learning for rice leaf disease classification using non independent and identically distributed images. Sustainability 15(16) (2023). https://doi.org/10.3390/su151612149
K, S., T, S., KS, P.: Advanced morphological technique for automatic brain tumor detection and evaluation of statistical parameters. Procedia Technology 24, 1374–1387 (2016)
MM, S., SK, S., V, S., S, E.: A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Systems with Applications 43, 186–196 (2016)
E, A.-M., M, E., R, A.-A.: Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal 16(1), 71–81 (2015)
N, N., M, K.: Brain tumors detection and segmentation in mr images: Gabor wavelet vs. statistical features. Computers and Electrical Engineering 45, 286–301 (2015)
J, A., M, S., M, Y., SL, F.: A distinctive approach in brain tumor detection and classification using mri. Pattern Recognition Letters (2017)
L, Z., K, J.: Multiscale cnns for brain tumor segmentation and diagnosis. Computational and Mathematical Methods in Medicine (2016)
Zhao, L., Jia, K.: Deep feature learning with discrimination mechanism for brain tumor segmentation and diagnosis. In: 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 306–309 (2015). https://doi.org/10.1109/IIH-MSP.2015.41
El Boustani, A., El Bachari, E.: Mri brain images compression and classification using different classes of neural networks. In: Attiogbé, C., Ferrarotti, F., Maabout, S. (eds.) New Trends in Model and Data Engineering, pp. 122–134. Springer, Cham (2019)
Cheng, Y., Qin, G., Zhao, R., Liang, Y., Sun, M.: Convcaps: Multi-input capsule network for brain tumor classification. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) Neural Information Processing, pp. 524–534. Springer, Cham (2019)
Liu, D., Liu, Y., Dong, L.: G-resnet: Improved resnet for brain tumor classification. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) Neural Information Processing, pp. 535–545. Springer, Cham (2019)
Maharjan, S., Alsadoon, A., Prasad, P.W.C., Al-Dalain, T., Alsadoon, O.H.: A novel enhanced softmax loss function for brain tumour detection using deep learning. Journal of Neuroscience Methods 330, 108520 (2020). https://doi.org/10.1016/j.jneumeth.2019.108520
Joshi, S.R., Headley, D.B., Ho, K.C., Pare, D., Nair, S.S.: Classification of brainwaves using convolutional neural network. In: 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5 (2019). https://doi.org/10.23919/EUSIPCO.2019.8902952
Ucuzal, H., YASAR, S., Colak, C.: Classification of brain tumor types by deep learning with convolutional neural network on magnetic resonance images using a developed web-based interface. In: 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–5 (2019). https://doi.org/10.1109/ISMSIT.2019.8932761
Adu, K., Yu, Y., Cai, J., Tashi, N.: Dilated capsule network for brain tumor type classification via mri segmented tumor region. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 942–947 (2019). https://doi.org/10.1109/ROBIO49542.2019.8961610
Siar, M., Teshnehlab, M.: Brain tumor detection using deep neural network and machine learning algorithm. In: 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 363–368 (2019). https://doi.org/10.1109/ICCKE48569.2019.8964846
Han, C., Rundo, L., Araki, R., Nagano, Y., Furukawa, Y., Mauri, G., Nakayama, H., Hayashi, H.: Combining noise-to-image and image-to-image gans: Brain mr image augmentation for tumor detection. IEEE Access 7, 156966–156977 (2019). https://doi.org/10.1109/ACCESS.2019.2947606
Li, M., Kuang, L., Xu, S., Sha, Z.: Brain tumor detection based on multimodal information fusion and convolutional neural network. IEEE Access 7, 180134–180146 (2019). https://doi.org/10.1109/ACCESS.2019.2958370
Zhou, Y., Li, Z., Zhu, H., Chen, C., Gao, M., Xu, K., Xu, J.: Holistic brain tumor screening and classification based on densenet and recurrent neural network. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., Walsum, T. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 208–217. Springer, Cham (2019)
Ozyurt, F., Sert, E., Avcı, D.: An expert system for brain tumor detection: Fuzzy c-means with super resolution and convolutional neural network with extreme learning machine. Medical Hypotheses 134, 109433 (2020). https://doi.org/10.1016/j.mehy.2019.109433
Comments (0)