Breast Ultrasound Image Segmentation Using Multi-branch Skip Connection Search

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A.,et al Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA: A Cancer Journal for Clinicians 71, 209 - 249 (2021)

Prasad, S.N., Houserková, D. The role of various modalities in breast imaging.Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 151(2), 209–218 (2007)

Xue, C., Zhu, L., Fu, H., Hu, X., Li, X., Zhang, H.,et al Global Guidance Network for Breast Lesion Segmentation in Ultrasound Images.Medical image analysis 70, 101989 (2021)

He, K., Zhang, X., Ren, S., Sun, J. Deep Residual Learning for Image Recognition.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2015)

Majumdar, S., Pramanik, P., Sarkar, R. Gamma function based ensemble of CNN models for breast cancer detection in histopathology images.Expert Syst Appl 213, 119022 (2022)

Pramanik, R., Pramanik, P., Sarkar, R. Breast cancer detection in thermograms using a hybrid of GA and GWO based deep feature selection method.Expert Syst Appl 219, 119643 (2023)

Yap, M.H., Goyal, M., Osman, F., Martí, R., Denton, E.R.E., Juette, A.,et al Breast ultrasound lesions recognition: end-to-end deep learning approaches.Journal of Medical Imaging 6(1), 011007 - 011007 (2018)

Ronneberger, O., Fischer, P., Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.ArXiv abs/1505.04597, (2015)

Byra, M., Jarosik, P., Szubert, A., Galperin, M., Ojeda-Fournier, H., Olson, L.K.,et al Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network.Biomedical signal processing and control 61, 10207 (2020)

Chen, G., Li, L., Dai, Y., Zhang, J. NU-net: An Unpretentious Nested U-net for Breast Tumor Segmentation.ArXiv abs/2209.07193, (2022)

Lvu, Y., Xu, Y., Jiang, X., Liu, J., Zhao, X., Zhu, X. AMS-PAN: Breast ultrasound image segmentation model combining attention mechanism and multi-scale features.Biomed Signal Process Control 81, 104425 (2023).

Song, H., Liu, C., Li, S., Zhang, P. TS-GCN: A novel tumor segmentation method integrating transformer and GCN.Mathematical biosciences and engineering : MBE 20(10), 18173-18190 (2023)

Iqbal, A., Sharif, M. BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images.Knowl Based Syst 267, 110393 (2023)

Qin, C., Wu, Y., Zeng, J., Tian, L., Zhai, Y., Li, F.,et al Joint Transformer and Multi-scale CNN for DCE-MRI Breast Cancer Segmentation.Soft Computing 26, 8317 - 8334 (2022)

Chen, G., Dai, Y., Zhang, J., Yap, M.H. AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images.IEEE Transactions on Medical Imaging 42(5), 1289-1300 (2022)

Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation.Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S 11045, 3–11 (2018)

Wu, H., Zhang, Z., Zhang, Y., Sun, B., Zhang, X. ACX-UNet: a multi-scale lung parenchyma segmentation study with improved fusion of skip connection and circular cross-features extraction.Signal, Image and Video Processing 18, 525–533 (2023)

U N, R., M A, G. BCDU-Net and chronological-AVO based ensemble learning for lung nodule segmentation and classification.Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 11, 1491 - 1511 (2022)

Zoph, B., Le, Q.V. Neural Architecture Search with Reinforcement Learning.ArXiv abs/1611.01578, (2016)

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition.2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8697–8710 (2017)

Real, E., Aggarwal, A., Huang, Y., Le, Q.V. Regularized Evolution for Image Classifier Architecture Search.ArXiv abs/1802.01548, (2018)

Xie, L., Yuille, A.L. Genetic CNN.2017 IEEE International Conference on Computer Vision (ICCV), 1388–1397 (2017)

Liu, H., Simonyan, K., Yang, Y. DARTS: Differentiable Architecture Search.ArXiv abs/1806.09055, (2018)

Xie, S., Zheng, H., Liu, C., Lin, L. SNAS: Stochastic Neural Architecture Search.ArXiv abs/1812.09926, (2018)

Wang, X., Xiang, T., Zhang, C., Song, Y., Liu, D., Huang, H.,et al (2021) BiX-NAS: Searching Efficient Bi-directional Architecture for Medical Image Segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 229–238

Jang, E., Gu, S.S., Poole, B. Categorical Reparameterization with Gumbel-Softmax.ArXiv abs/1611.01144, (2016)

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q.,et al (2021) Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation. In: ECCV Workshops, pp 205–218

Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y.,et al TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation.ArXiv abs/2102.04306, (2021)

Al-Dhabyani, W.S., Gomaa, M.M.M., Khaled, H., Fahmy, A.A. Dataset of breast ultrasound images.Data in Brief 28, 104863 (2019)

Piotrzkowska-Wróblewska, H., Dobruch-Sobczak, K., Byra, M., Nowicki, A. Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions.Medical Physics 44, 6105–6109 (2017)

Wang, Y., Jiang, C., Luo, S., Dai, Y., Zhang, J. Graph Neural Network Enhanced Dual-Branch Network for lesion segmentation in ultrasound images.Expert Syst Appl 256, 124835 (2024)

Comments (0)

No login
gif