Advancing Visual Perception Through VCANet-Crossover Osprey Algorithm: Integrating Visual Technologies

Gupt S, Thakur S, Gupta A: Comparative study of different machine learning models for automatic diabetic retinopathy detection using fundus image. Multimedia Tools and Applications, 83(12):34291-34322, 2024.

Google Scholar 

Nazir T, Nawaz M, Rashid J, Mahum R, Masood M, Mehmood A, Ali F, Kim J, Kwon HY, Hussain A : Detection of diabetic eye disease from retinal images using a deep learning based CenterNet model. Sensors, 21(16): 5283, 2021.

PubMed  PubMed Central  Google Scholar 

Sarkar P, Dewangan O, Joshi A: A review on applications of artificial intelligence on bionic eye designing and functioning. Scandinavian Journal of Information Systems, 35(1):1119-1127, 2023.

Google Scholar 

Uppamma P, Bhattacharya S: Deep learning and medical image processing techniques for diabetic retinopathy: a survey of applications, challenges, and future trends. Journal of Healthcare Engineering, 2023(1): 2728719, 2023.

PubMed  PubMed Central  Google Scholar 

Triwijoyo BK, Sabarguna BS, Budiharto W, Abdurachman E: Deep learning approach for classification of eye diseases based on color fundus images. In Diabetes and fundus OCT, 25–57, 2020

Narayan V, Mall PK, Alkhayyat A, Abhishek K, Kumar S, Pandey P: [Retracted] Enhance‐Net: An Approach to Boost the Performance of Deep Learning Model Based on Real‐Time Medical Images. Journal of Sensors, 2023(1): 8276738, 2023.

Google Scholar 

Alyoubi WL, Abulkhair MF Shalash WM: Diabetic retinopathy fundus image classification and lesions localization system using deep learning. Sensors, 21(11): 3704, 2021.

PubMed  PubMed Central  Google Scholar 

Alharbi M: Multi-classification of eye disease based on fundus images using hybrid Squeeze Net and LRCN model. Multimedia Tools and Applications, 1–30, 2024.

El-Ateif S, Idri A : Eye diseases diagnosis using deep learning and multimodal medical eye imaging. Multimedia Tools and Applications, 83(10): 30773-30818, 2024.

Google Scholar 

Palaniswamy T, Vellingiri M: Internet of Things and Deep Learning Enabled Diabetic Retinopathy Diagnosis Using Retinal Fundus Images. IEEE Access, 11: 27590-27601, 2023.

Google Scholar 

Islam MR, Abdulrazak LF, Nahiduzzaman M, Goni MOF, Anower M, Ahsan M, Haider J, Kowalski M: Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Computers in biology and medicine, 146: 105602, 2022.

PubMed  Google Scholar 

Bilal A, Liu X, Baig TI, Long H, Shafiq M: EdgeSVDNet: 5G-enabled detection and classification of vision-threatening diabetic retinopathy in retinal fundus images. Electronics, 12(19) : 4094, 2023.

Google Scholar 

Bilal A, Liu X, Shafiq M, Ahmed Z, Long H: NIMEQ-SACNet: A novel self-attention precision medicine model for vision-threatening diabetic retinopathy using image data. Computers in Biology and Medicine, 171:108099, 2024.

PubMed  Google Scholar 

Al-Fahdawi S, Al-Waisy AS, Zeebaree DQ, Qahwaji R, Natiq H, Mohammed MA, Nedoma, J, Martinek R, Deveci M: Fundus-deepnet: Multi-label deep learning classification system for enhanced detection of multiple ocular diseases through data fusion of fundus images. Information Fusion, 102, p.102059, 2024.

Google Scholar 

Mondal SS, Mandal N, Singh KK, Singh A, Izonin I: Edldr: An ensemble deep learning technique for detection and classification of diabetic retinopathy. Diagnostics 13(1):124, 2022

PubMed  PubMed Central  Google Scholar 

Xu Y, Zhou Z, Li X, Zhang N, Zhang M, Wei P: FFU‐net: feature fusion u‐net for lesion segmentation of diabetic retinopathy. BioMed Research International, 2021(1): 6644071, 2021

PubMed  PubMed Central  Google Scholar 

Kalyani G, Janakiramaiah B, Karuna A, Prasad LN: Diabetic retinopathy detection and classification using capsule networks. Complex & Intelligent Systems, 9(3):2651-2664. 2023

Google Scholar 

Xu C, Guo X, Yang G, Cui Y, Su L, Dong H, Hu X, Che, S: Prior-guided attention fusion transformer for multi-lesion segmentation of diabetic retinopathy. Scientific Reports, 14(1):20892, 2024

CAS  PubMed  PubMed Central  Google Scholar 

Qiu, J, Huang, W, Huang, Y, Yu N, Tang X: AugPaste: A one-shot approach for diabetic retinopathy detection. Biomedical Signal Processing and Control, 96: 106489, 2024

Google Scholar 

Luo X, Wang W, Xu Y, Lai Z, Jin X, Zhang B, Zhang D: A deep convolutional neural network for diabetic retinopathy detection via mining local and long‐range dependence. CAAI Transactions on Intelligence Technology, 9(1): 153-166, 2024

Google Scholar 

Romero-Oraá R, Herrero-Tudela M, López MI, Hornero R, García M: Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Computer Methods and Programs in Biomedicine, 249: 108160, 2024

PubMed  Google Scholar 

Lei S, Lei X, Chen M, Pan Y: Drug Repositioning Based on Deep Sparse Autoencoder and Drug–Disease Similarity. Interdisciplinary Sciences: Computational Life Sciences, 16(1): 160-175, 2024

PubMed  Google Scholar 

Dapello J, Marques T, Schrimpf M, Geiger F, Cox D, DiCarlo JJ: Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations. Advances in Neural Information Processing Systems, 33:13073-13087, 2020

Google Scholar 

Shi C, Liu Z, Qu J, Deng Y: The Expansion Methods of Inception and Its Application. Symmetry, 16(4): 494, 2024

Google Scholar 

Dehghani M, Trojovský, P, Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Frontiers in Mechanical Engineering, 8 :1126450, 2023.

Google Scholar 

Su H, Zhao D, Yu F, Heidari AA, Xu Z, Alotaibi FS, Mafarja M. Che H: A horizontal and vertical crossover cuckoo search: Optimizing performance for the engineering problems. Journal of Computational Design and Engineering, 10(1): 36-64, 2023.

Google Scholar 

Li L, Ma K, Song Y, Du X: TSRL-Net: Target-aware supervision residual learning for stroke segmentation. Computers in Biology and Medicine, 159: 106840, 2023.

PubMed  Google Scholar 

Gezici H, Livatyali H: An improved Harris Hawks Optimization algorithm for continuous and discrete optimization problems. Engineering Applications of Artificial Intelligence, 113: 104952, 2022.

Google Scholar 

Sahoo SK, Saha AK : A hybrid moth flame optimization algorithm for global optimization. Journal of Bionic Engineering, 19(5):1522-1543, 2022.

Google Scholar 

Nadimi-Shahraki MH, Zamani H, Mirjalili S: Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study. Computers in biology and medicine, 148: 105858, 2022.

CAS  PubMed  Google Scholar 

Pawan YN, Prakash KB, Chowdhury S, Hu YC: Particle swarm optimization performance improvement using deep learning techniques. Multimedia Tools and Applications, 81(19): 27949-27968, 2022.

Google Scholar 

Comments (0)

No login
gif