Enhancing Burn Diagnosis through SE-ResNet18 and Confidence Filtering

L. Portaluppi, C.S. Bettiol, A.C. Nazário, and N.O. Nazário. Time trend of hospitalization due to burn, in the age group of 0-14 years, in brazil, 2012-2022. Rev. Bras. Cir. Plást., 39(3):e0907, 2024. URL: https://www.scielo.br/j/rbcp/a/7hhbh3Xg6vfv8dMg7CYVc9J/?lang=en.

M.G. Jeschke, M.E. van Baar, and M.A. et al. Choudhry. Burn injury. Nat Rev Dis Primers, 6:11, 2020. https://doi.org/10.1038/s41572-020-0145-5.

S. Saleem, A. Rehman, A. Akbar, A.I. Ali, S.K. Jadoon, M.I. Khattak, and A. Mehraj. Meta-analysis of the global mortality rate due to infection in burn patients admitted for plastic surgery. Cureus, 16(8):e67425, 2024. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC11415252/#REF1, https://doi.org/10.7759/cureus.67425.

D.P. Kumar, P.B. Mohan, S. Koliyath, I. Pathan, N. Thomas, N. Kerakada, A. Yadav, L.S. Singh, and A.G. Nair. Ryan score as a mortality predictor in burns patients in a tertiary care centre. AMJ, 17(3):1205–1208, 2024. URL: https://core.ac.uk/download/pdf/613213977.pdf.

N.E.E. Van Loey. Psychological Impact of Living with Scars Following Burn Injury. Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-44766-3_48.

E. Rossella, M. Giulio, and M. Michele. Burns: Classification and Treatment. Springer, Cham, 2022. https://doi.org/10.1007/978-3-030-82335-1_18.

Y. Wang, Z. Ke, Z. He, X. Chen, and Y. et al. Zhang. Real-time burn depth assessment using artificial networks: a large-scale, multicentre study. Burns, 46(8):1829–1838, 2020. https://doi.org/10.1016/j.burns.2020.07.010.

J.J. He and C. McCarthy. Development of hydrogel-based sprayable wound dressings for second- and third-degree burns. Advanced Nanobiomedicine and Research, 1:2100004, 2021. https://doi.org/10.1002/anbr.202100004.

Article  CAS  Google Scholar 

N. Watzinger, A. Hecker, D. Petschnig, and J. Tran. Long-term functional outcomes after hand burns: A monocentric controlled cohort study. Journal of Clinical Medicine, 13(12):3509, 2024. URL: https://www.mdpi.com/2077-0383/13/12/3509.

M. Burgess, F. Valdera, D. Varon, E. Kankuri, and K. Nuutila. The immune and regenerative response to burn injury. Cells, 11, 2022. URL: https://www.mdpi.com/2073-4409/11/19/3073.

H.A. Ladhani, C.J. Yowler, and J.A. Claridge. Burn wound colonization, infection, and sepsis. Surgical Infections, 22, 2021. URL: https://www.liebertpub.com/doi/abs/10.1089/sur.2020.346.

P.P.G. Mulder, H.J.P.M. Koenen, M. Vlig, and I. Joosten. Burn-induced local and systemic immune response: Systematic review and meta-analysis of animal studies. Journal of Investigative Dermatology, 142, 2022. URL: https://www.sciencedirect.com/science/article/pii/S0022202X22003979.

Sayma Alam Suha and Tahsina Farah Sanam. A deep convolutional neural network-based approach for detecting burn severity from skin burn images. Machine Learning with Applications, 9:100371, 2022. https://doi.org/10.1016/j.mlwa.2022.100371.

Article  Google Scholar 

J. Karthik, G.S. Nath, and A. Veena. Deep learning-based approach for skin burn detection with multi-level classification. In S.M. Thampi, E. Gelenbe, M. Atiquzzaman, V. Chaudhary, and K.C. Li, editors, Advances in Computing and Network Communications. Lecture Notes in Electrical Engineering, volume 736. Springer, Singapore, 2021. https://doi.org/10.1016/j.burns.2020.12.004.

M.M. Billah, A.A. Rakib, M.S. Hossain, and M.K. et al. Nahar. A hybrid approach to brain tumor detection: Combining deep convolutional networks with traditional image processing methods for enhanced mri classification. ResearchGate, 2024. URL: https://www.researchgate.net/profile/Muhammad-Billah-9/publication/385626066.

T.C. Yu, C.K. Yang, and W.H. et al. Hsu. A machine-learning-based algorithm for bone marrow cell differential counting. International Journal of Medical Informatics, 168, 2024. URL: https://www.sciencedirect.com/science/article/pii/S1386505624003551.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(8):2011–2023, 2018. https://doi.org/10.1109/TPAMI.2019.2913372.

Article  Google Scholar 

Tristan Cazenave, Julien Sentuc, and Mathurin Videau. Cosine annealing, mixnet and swish activation for computer go. In Advances in Computer Games, pages 53–60. Springer, 2021.

P. Zhao and M. et al. Alencastre-Miranda. Modeling uncertainty in computer vision based gross motor function assessment of children with cerebral palsy. In Proceedings of the 10th IEEE RAS International Conference on Robotics and Automation, 2024. URL: https://ieeexplore.ieee.org/abstract/document/10719726/.

Francisco Serra E Moura, Kavit Amin, and Chidi Ekwobi. Artificial intelligence in the management and treatment of burns: a systematic review. Burns & Trauma, 9:tkab022, 2021.

X. Jin. Analysis of residual block in the resnet for image classification. In Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, 2023. URL: https://www.scitepress.org/Papers/2023/128004/128004.pdf.

Qing Li, Weidong Cai, Xiaogang Wang, Yun Zhou, David Dagan Feng, and Mei Chen. Medical image classification with convolutional neural network. In 2014 13th international conference on control automation robotics & vision (ICARCV), pages 844–848. IEEE, 2014.

Maryam Asadi-Aghbolaghi, Amirali Darbandsari, Allen Zhang, Alberto Contreras-Sanz, Jeffrey Boschman, Pouya Ahmadvand, Martin Köbel, David Farnell, David G Huntsman, Andrew Churg, et al. Learning generalizable ai models for multi-center histopathology image classification. NPJ Precision Oncology, 8(1):151, 2024.

Sayma Alam Suha and Tahsina Farah Sanam. A deep convolutional neural network-based approach for detecting burn severity from skin burn images. Machine Learning with Applications, 9:100371, 2022.

Google Scholar 

C Pabitha and B Vanathi. Dense mesh rcnn: assessment of human skin burn and burn depth severity. The Journal of Supercomputing, 80(1):1331–1362, 2024.

Google Scholar 

Saeka Rahman, Md Motiur Rahman, Miad Faezipour, Mo Rastgaar, Elika Ridelman, Justin D Klein, Beth A Angst, and Christina M Shanti. Enhancing burn severity assessment with deep learning: A comparative analysis and computational efficiency evaluation. IEEE Access, 2024.

J.J. He, C. McCarthy, and G. Camci-Unal. Development of hydrogel-based sprayable wound dressings for second- and third-degree burns. Advanced Nanobiomedicine and Research, 1:2100004, 2021. https://doi.org/10.1002/anbr.202100004.

Article  CAS  Google Scholar 

D. Murcia-Gómez, I. Rojas-Valenzuela, and O. Valenzuela. Impact of image preprocessing methods and deep learning models for classifying histopathological breast cancer images. Applied Sciences, 12(22):11375, 2022. https://doi.org/10.3390/app122211375.

Article  CAS  Google Scholar 

P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, and A. Haworth. A review of medical image data augmentation techniques for deep learning applications. Journal of Medical Imaging and Radiation Oncology, 65:545–563, 2021. https://doi.org/10.1111/1754-9485.13261.

Article  PubMed  Google Scholar 

S.S. Yadav and S.M. Jadhav. Deep convolutional neural network based medical image classification for disease diagnosis. Journal of Big Data, 6:113, 2019. https://doi.org/10.1186/s40537-019-0276-2.

Article  Google Scholar 

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983, 2016.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9268–9277, 2019.

Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class imbalance. Journal of Big Data, 6(1):1–54, 2019.

Ian Goodfellow. Deep learning, 2016.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Xinyan Ou, Qing Chang, and Nilanjan Chakraborty. Simulation study on reward function of reinforcement learning in gantry work cell scheduling. Journal of Manufacturing Systems, 50:1–8, 2019. URL: https://www.sciencedirect.com/science/article/pii/S0278612518304503.

NorulNarijah Mohamed Zamri, Goh Fan Ling, Pang Ying Han, and Ooi Shih Yin. Vision-based human action recognition on pre-trained alexnet. In 2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pages 1–5, 2019. URL: https://scholar.google.com/scholar_lookup?title=Vision-based%20Human%20Action%20Recognition%20on%20Pre-trained%20AlexNet%20%5BC%5D&author=N%20N%20M%20Zamri &publication_year=2019.

Siyuan Lu, Zhihai Lu, and Yu-Dong Zhang. Pathological brain detection based on alexnet and transfer learning. Journal of Computational Science, 30:41–47, 2019. URL: https://www.sciencedirect.com/science/article/pii/S1877750318309116.

Z.P. Jiang, Y.Y. Liu, and Z.E. et al. Shao. An improved vgg16 model for pneumonia image classification. Applied Sciences, 11(23):11185, 2021. URL: https://www.mdpi.com/2076-3417/11/23/11185.

S. Mascarenhas and M. Agarwal. A comparison between vgg16, vgg19 and resnet50 architecture frameworks for image classification. In 2021 International Conference on Disruptive Technologies for Multi-disciplinary Research and Applications (CENTCON), pages 96–99, 2021. URL: https://ieeexplore.ieee.org/abstract/document/9687944.

Sangeeta Kakarwal and Pradip Paithane. Automatic pancreas segmentation using resnet-18 deep learning approach. System Research and Information Technologies, pages 104–116, 2022. URL: https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0%2C5 &q=Automatic+pancreas+segmentation+using+ResNet-18+deep+learning+approach &btnG=.

Thomas B Fitzpatrick. The validity and practicality of sun-reactive skin types i through vi. Archives of Dermatology, 124(6):869–871, 1988.

Scott Prahl. Optical absorption of hemoglobin. Oregon Medical Center News, 1999.

SM Monstrey, HENDRIK Hoeksema, RD Baker, J Jeng, RS Spence, D Wilson, and SA Pape. Burn wound healing time assessed by laser doppler imaging. part 2: validation of a dedicated colour code for image interpretation. Burns, 37(2):249–256, 2011.

Gladimir VG Baranoski and Aravind Krishnaswamy. Light and skin interactions: simulations for computer graphics applications. Morgan Kaufmann, 2010.

Y. Kim, D. Cho, and K. et al. Han. Domain adaptation without source data. IEEE Transactions on Artificial Intelligence, 2(6):508–518, 2021. URL: https://ieeexplore.ieee.org/abstract/document/9528982.

H. Wang, Y. Cong, and O. et al. Litany. 3dioumatch: Leveraging iou prediction for semi-supervised 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14615–14624, 2021. URL: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_3DIoUMatch_Leveraging_IoU_Prediction_for_Semi-Supervised_3D_Object_Detection_CVPR_2021_paper.html.

Yun Jiang, Li Chen, Hai Zhang, and Xiao Xiao. Breast cancer histopathological image classification using convolutional neural networks with small se-resnet module. PloS One, 14(3):e0214587, 2019.

CAS  PubMed  PubMed Central  Google Scholar 

Zhaowei Zhu, Han Wang, Tingting Zhao, Yangming Guo, Zhuoyang Xu, Zhuo Liu, Siqi Liu, Xiang Lan, Xingzhi Sun, and Mengling Feng. Classification of cardiac abnormalities from ecg signals using se-resnet. In 2020 Computing in Cardiology, pages 1–4. IEEE, 2020.

Comments (0)

No login
gif