Development and Validation of an Early Recurrence Prediction Model for High-Grade Glioma Integrating Temporalis Muscle and Tumor Features: Exploring the Prognostic Value of Temporalis Muscle

Ostrom, Q.T., et al.,CBTRUS statistical report: primary brain and other central nervous systemtumors diagnosed in the United States in 2015–2019.Neuro-oncology, 2022. 24(Supplement_5): p. v1-v95.

Wen, P.Y. and S.Kesari, Malignant gliomas in adults. New England Journal of Medicine, 2008.359(5): p. 492-507.

Frosina, G.,Recapitulating the Key Advances in the Diagnosis and Prognosis of High-GradeGliomas: Second Half of 2021 Update. Int J Mol Sci, 2023. 24(7): p.10.3390/ijms24076375: https://doi.org/10.3390/ijms24076375

Stupp, R., et al.,Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. NewEngland journal of medicine, 2005. 352(10): p. 987-996.

Brown, T.J., et al.,Association of the Extent of Resection With Survival in Glioblastoma: ASystematic Review and Meta-analysis. JAMA Oncology, 2016. 2(11): p. 1460-1469.10.1001/jamaoncol.2016.1373: https://doi.org/10.1001/jamaoncol.2016.1373

Lamborn, K.R., etal., Progression-free survival: an important end point in evaluating therapyfor recurrent high-grade gliomas. Neuro-oncology, 2008. 10(2): p. 162-170.

Wang, Y., et al.,Charged particle therapy for high-grade gliomas in adults: a systematic review.Radiat Oncol, 2023. 18(1): p. 29. 10.1186/s13014-022-02187-z:

Tan, A.C., et al.,Management of glioblastoma: State of the art and future directions. CA: acancer journal for clinicians, 2020. 70(4): p. 299-312.

White, J., et al.,The tumour microenvironment, treatment resistance and recurrence in glioblastoma. Journal of translational medicine, 22(1): p. 540.10.1186/s12967-024-05301-9: https://doi.org/10.1186/s12967-024-05301-9

Irwin, C., et al.,Delay in radiotherapy shortens survival in patients with high grade glioma.Journal of neuro-oncology, 2007. 85(p. 339-343.

Tan, A.C., et al., Management of glioblastoma: State of the art and future directions. CA Cancer J Clin, 2020. 70(4): p. 299-312. https://doi.org/10.3322/caac.21613

Akiba, T., et al. Optuna: A Next-generation Hyperparameter Optimization Framework. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 20192623–2631.

Oktay, O., et al.,Attention u-net: Learning where to look for the pancreas. arXiv preprintarXiv:1804.03999, 2018. p.

Chen, J., et al., Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306, 2021. p.

Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III 18. 2015. Springer.

Zhou, Z., et al. Unet++: A nested u-net architecture formedical image segmentation. in DeepLearning in Medical Image Analysis and Multimodal Learning for ClinicalDecision Support: 4th International Workshop, DLMIA 2018, and 8th InternationalWorkshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain,September 20, 2018, Proceedings 4. 2018. Springer.

Breiman, L., RandomForests. Machine Learning, 2001. 45(1): p. 5-32. 10.1023/A:1010933404324:

Liu, F., et al.,Predictive value of temporal muscle thickness measurements on cranial magneticresonance images in the prognosis of patients with primary glioblastoma.Frontiers in Neurology, 2020. 11(p. 523292.

Muglia, R., et al.,Prognostic relevance of temporal muscle thickness as a marker of sarcopenia inpatients with glioblastoma at diagnosis. European Radiology, 2021. 31(p.4079-4086.

Rier, H.N., et al.,The prevalence and prognostic value of low muscle mass in cancer patients: areview of the literature. The oncologist, 2016. 21(11): p. 1396-1409.

Freund, Y. and R.E. Schapire, Experiments with a new boosting algorithm, in Proceedings of the Thirteenth International Conference on International Conference on Machine Learning. 1996, Morgan Kaufmann Publishers Inc.: Bari, Italy. p. 148–156.

Ke, G., et al., LightGBM: a highly efficient gradient boosting decision tree, in Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, Curran Associates Inc.: Long Beach, California, USA. p. 3149–3157.

Dorogush, A.V., et al., Fighting biases with dynamic boosting. ArXiv, 2017. abs/1706.09516(p.

Chen, T. and C.Guestrin, XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.p.

Battiti, R., Usingmutual information for selecting features in supervised neural net learning.IEEE Transactions on Neural Networks, 1994. 5(4): p. 537-550.10.1109/72.298224: https://doi.org/10.1109/72.298224

Guyon, I., et al.,Gene Selection for Cancer Classification using Support Vector Machines. MachineLearning, 2002. 46(1): p. 389-422. 10.1023/A:1012487302797:

Cepeda, S., et al.,The Río Hortega University Hospital Glioblastomadataset: A comprehensive collection of preoperative, early postoperative andrecurrence MRI scans (RHUH-GBM). Data in Brief, 2023. 50(p. 109617. https://doi.org/10.7937/4545-c905

Beare, R., B.Lowekamp, and Z. Yaniv, Image Segmentation, Registration and Characterizationin R with SimpleITK. Journal of Statistical Software, 2018. 86(8): p. 1 - 35. https://doi.org/10.18637/jss.v086.i08

Yaniv, Z., et al.,SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Educationand Reproducible Research. Journal of Digital Imaging, 2018. 31(3): p. 290-303.10.1007/s10278-017-0037-8:https://doi.org/10.1007/s10278-017-0037-8

Lowekamp, B.C., etal., The Design of SimpleITK. Frontiers in Neuroinformatics, 2013. 7(p.10.3389/fninf.2013.00045: https://doi.org/10.3389/fninf.2013.00045

Van Griethuysen,J.J., et al., Computational radiomics system to decode the radiographicphenotype. Cancer research, 2017. 77(21): p. e104-e107.

Bradski, G. and A.Kaehler, OpenCV. Dr. Dobb’s journal of software tools,2000. 3(2): p.

Harris, C.R., et al.,Array programming with NumPy. Nature, 2020. 585(7825): p. 357-362.

Weller, M., et al.,European Association for Neuro-Oncology (EANO) guideline on the diagnosis andtreatment of adult astrocytic and oligodendroglial gliomas. The lancetoncology, 2017. 18(6): p. e315-e329.

Fabian, D., et al.,Treatment of Glioblastoma (GBM) with the Addition of Tumor-Treating Fields(TTF): A Review. Cancers (Basel), 2019. 11(2): p. https://doi.org/10.3390/cancers11020174: https://doi.org/10.3390/cancers11020174

Sanai, N. and M.S.Berger, Surgical oncology for gliomas: the state of the art. Nature ReviewsClinical Oncology, 2018. 15(2): p. 112-125.

King, J.L. and S.R.Benhabbour, Glioblastoma Multiforme-A Look at the Past and a Glance at theFuture. Pharmaceutics, 2021. 13(7): p. https://doi.org/10.3390/pharmaceutics13071053: https://doi.org/10.3390/pharmaceutics13071053

Furtak, J., et al.,Survival after reoperation for recurrent glioblastoma multiforme: A prospectivestudy. Surgical Oncology, 2022. 42(p. 101771.

Hoggarth, A.R., etal., Clinical Theranostics in Recurrent Gliomas: A Review. Cancers, 16(9): p.1715. https://doi.org/10.3390/cancers16091715: https://doi.org/10.3390/cancers16091715

Ma, X. and J. Liu,Predictive value of MRI features on glioblastoma. European Radiology, 2023.33(6): p. 4472-4474. 10.1007/s00330-023-09535-x:

Thenuwara, G., J.Curtin, and F. Tian, Advances in Diagnostic Tools and Therapeutic Approachesfor Gliomas: A Comprehensive Review. Sensors (Basel), 2023. 23(24): p. https://doi.org/10.3390/s23249842: https://doi.org/10.3390/s23249842

Qiao, W., et al.,Development of preoperative and postoperative models to predict recurrence inpostoperative glioma patients: a longitudinal cohort study. BMC Cancer, 2024.24(1): p. 274. https://doi.org/10.1186/s12885-024-11996-2: https://doi.org/10.1186/s12885-024-11996-2

Tan, Y., et al.,Improving survival prediction of high-grade glioma via machine learningtechniques based on MRI radiomic, genetic and clinical risk factors. Europeanjournal of radiology, 2019. 120(p. 108609.

Li, Z.-C., et al.,Glioma survival prediction from whole-brain MRI without tumor segmenta tionusing deep attention network: a multicenter study. European radiology, 32(8):p. 5719-5729. https://doi.org/10.1007/s00330-022-08640-7: https://doi.org/10.1007/s00330-022-08640-7

Molenaar, R.J., etal., The combination of IDH1 mutations and MGMT methylation status predictssurvival in glioblastoma better than either IDH1 or MGMT alone. Neuro-Oncology,2014. 16(9): p. 1263-1273. https://doi.org/10.1093/neuonc/nou005: https://doi.org/10.1093/neuonc/nou005

Aleid, A.M., et al.,Advanced magnetic resonance imaging for glioblastoma: Oncology-radiologyintegration. Surg Neurol Int, 2024. 15(p. 309. https://doi.org/10.25259/sni_498_2024: https://doi.org/10.25259/sni_498_2024

Zhang, H., et al.,Role of magnetic resonance spectroscopy for the differentiation of recurrentglioma from radiation necrosis: a systematic review and meta-analysis. Eur JRadiol, 2014. 83(12): p. 2181-2189. https://doi.org/10.1016/j.ejrad.2014.09.018: https://doi.org/10.1016/j.ejrad.2014.09.018

Tang, J., et al., Therelationship between prognosis and temporal muscle thickness in 10 2 patientswith glioblastoma. Scientific reports, 14(1): p. 13958. https://doi.org/10.1038/s41598-024-64947-z: https://doi.org/10.1038/s41598-024-64947-z

Mi, E., et al., Deeplearning-based quantification of temporalis muscle has prognostic value inpatients with glioblastoma. British journal of cancer, 126(2): p. 196-203. https://doi.org/10.1038/s41416-021-01590-9: https://doi.org/10.1038/s41416-021-01590-9

Pasqualetti, F., etal., Impact of temporalis muscle thickness in elderly patients with newly diagnosed glioblastoma treated with radio or radio-chemotherapy. La Radiologiamedica, 127(8): p. 919-924. https://doi.org/10.1007/s11547-022-01524-2: https://doi.org/10.1007/s11547-022-01524-2

Jia, Z., et al.,Exploring the relationship between age and prognosis in glioma: rethinkingcurrent age stratification. BMC Neurology, 2022. 22(1): p. 350. https://doi.org/10.1186/s12883-022-02879-9: https://doi.org/10.1186/s12883-022-02879-9

Mohammadzadeh, I., etal., Can we rely on machine learning algorithms as a trustworthy predictor forrecurrence in high-grade glioma? A systematic review and meta-analysis.Clinical Neurology and Neurosurgery, 2025. 249(p. 108762. https://doi.org/10.1016/j.clineuro.2025.108762

Chen, D., et al.,Classification of Benign and Malignant Features of Glioma and Prediction ofEarly Metastasis and Recurrence Based on Enhanced MRI Imaging. ScientificProgramming, 2022. 2022(1): p. 1955512.

Shukla, G., et al.,Advanced magnetic resonance imaging in glioblastoma: a review. Chinese ClinicalOncology, 2017. 6(4): p. 40.

Wiggermann, V., etal., FLAIR2: A Combination of FLAIR and T2 for ImprovedMS Lesion Detection. American Journal of Neuroradiology, 2016. 37(2): p.259-265. https://doi.org/10.3174/ajnr.A4514: https://doi.org/10.3174/ajnr.A4514

Meisterernst, J., etal., Focal T2 and FLAIR hyperintensities within the infarcted area: A suitablemarker for patient selection for treatment? PLOS ONE, 2017. 12(9): p. e0185158. https://doi.org/10.1371/journal.pone.0185158: https://doi.org/10.1371/journal.pone.0185158

Li, M., et al.,T2/FLAIR Abnormity Could be the Sign of Glioblastoma Dissemination. FrontNeurol, 2022. 13(p. 819216. https://doi.org/10.3389/fneur.2022.819216: https://doi.org/10.3389/fneur.2022.819216

Hajianfar, G., etal., Time-to-event overall survival prediction in glioblastoma multiformepatients using magnetic resonance imaging radiomics. Radiol Med, 2023. 128(12):p. 1521-1534. https://doi.org/10.1007/s11547-023-01725-3: https://doi.org/10.1007/s11547-023-01725-3

Comments (0)

No login
gif