Radhakrishnan S, Goldsmith J, Huang D, Westphal V, Dueker DK, Rollins AM, Izatt JA, Smith SD: Comparison of Optical Coherence Tomography and Ultrasound Biomicroscopy for Detection of Narrow Anterior Chamber Angles. Arch Ophthalmol 123:1053, 2005.
Li J, Drechsler J, Lin A, Widlus M, Qureshi A, Stoleru G, Saeedi O, Levin MR, Kaleem M, Jaafar M, Madigan WP, Alexander JL: Repeatability and Reliability of Quantified Ultrasound Biomicroscopy Image Analysis of the Ciliary Body at the Pars Plicata. Ultrasound Med Biol 47:1949–1956, 2021.
Article PubMed PubMed Central Google Scholar
Helms RW, Minhaz AT, Wilson DL, Örge FH: Clinical 3D Imaging of the Anterior Segment With Ultrasound Biomicroscopy. Transl Vis Sci Technol 10:11, 2021.
Article PubMed PubMed Central Google Scholar
Minhaz AT, Sevgi DD, Kwak S, Kim A, Wu H, Helms RW, Bayat M, Wilson DL, Orge FH: Deep Learning Segmentation, Visualization, and Automated 3D Assessment of Ciliary Body in 3D Ultrasound Biomicroscopy Images. Transl Vis Sci Technol 11:3, 2022.
Article PubMed PubMed Central Google Scholar
Minhaz AT, Sevgi DD, Kwak S, Kim A, Burstein T, Kanagasegar N, Wu H, Helms R, Bayat M, Orge F, Wilson DL: Deep learning segmentation of ciliary tissues using 3D ultrasound biomicroscopy (3D-UBM) images. SPIE Medical Imaging, 2022
Minhaz AT, Wu H, Helms R, Sevgi DD, Kim A, Kwak S, Orge F, Wilson DL: 3D ultrasound biomicroscopy (3D-UBM) imaging of the eye for unique 3D assessment of ciliary body. SPIE Medical Imaging, 2020.
Wu H, Minhaz AT, Helms R, Sevgi DD, Yu T, Orge F, Wilson DL: 3D ultrasound biomicroscopy (3D-UBM) imaging and automated 3D assessment of the iridocorneal angle for glaucoma patients. SPIE Medical Imaging, 2019.
Minhaz AT, Bayat M, Sevgi DD, Chen H, Kwak S, Helms RW, Orge F, Wilson DL: Deconvolution of ultrasound biomicroscopy images using generative adversarial networks to visualize and evaluate localization of ocular structures. SPIE Medical Imaging, 2021.
He M, Wang D, Jiang Y: Overview of Ultrasound Biomicroscopy. J Curr Glaucoma Pract 6:25–53, 2012.
Article PubMed PubMed Central Google Scholar
Li M, Chen Y, Chen X, Zhu W, Chen X, Wang X, Fang Y, Kong X, Dai Y, Chen J, Sun X: Differences between fellow eyes of acute and chronic primary angle closure (glaucoma): An ultrasound biomicroscopy quantitative study. PLoS ONE 13(2): e0193006, 2018.
Article PubMed PubMed Central Google Scholar
Ramasubramanian V, Glasser A: Objective measurement of accommodative biometric changes using ultrasound biomicroscopy. J Cataract Refract Surg 41:511–526, 2015.
Article PubMed PubMed Central Google Scholar
Okamoto Y, Okamoto F, Nakano S, Oshika T: Morphometric assessment of normal human ciliary body using ultrasound biomicroscopy. Graefes Arch Clin Exp Ophthalmol 255:2437–2442, 2017.
He N, Wu L, Qi M, He M, Lin S, Wang X, Yang F, Fan X: Comparison of Ciliary Body Anatomy between American Caucasians and Ethnic Chinese Using Ultrasound Biomicroscopy. Curr Eye Res 41:485–491, 2016.
Qureshi A, Chen H, Saeedi O, Kaleem MA, Stoleru G, Margo J, Kalarn S, Alexander JL: Anterior segment ultrasound biomicroscopy image analysis using ImageJ software: Intra-observer repeatability and inter-observer agreement. Int Ophthalmol 39:829–837, 2019.
Ku JY, Nongpiur ME, Park J, Narayanaswamy AK, Perera SA, Tun TA, Kumar RS, Baskaran M, Aung T: Qualitative Evaluation of the Iris and Ciliary Body by Ultrasound Biomicroscopy in Subjects With Angle Closure. J Glaucoma 23:583–588, 2014.
Fish D, Brinicombe A, Pike E, Walker J: Blind deconvolution by means of the Richardson–Lucy algorithm. J Opt Soc Am A 12:58–65, 1995.
Caron JN, Namazi NM, Rollins CJ: Noniterative blind data restoration by use of an extracted filter function. Appl Opt 41:6884–6889, 2002.
Rao N, Mehra S, Bridges J, Venkatraman S: Experimental point spread function of FM pulse imaging scheme. Ultrason Imaging 17:114–141, 1995.
Article CAS PubMed Google Scholar
Shin HC, Prager R, Ng J, Gomersall H, Kingsbury N, Treece G, Gee A. Sensitivity to point-spread function parameters in medical ultrasound image deconvolution. Ultrasonics 49:344–357, 2009.
Carrillo RE, et al.: A sparse regularization approach for ultrafast ultrasound imaging. 2015 IEEE International Ultrasonics Symposium (IUS) 1–4, 2015.
Michailovich OV: Non-stationary blind deconvolution of medical ultrasound scans. SPIE Medical Imaging 101391C, 2017.
Roquette L, Simeoni M, Hurley P, Besson A: On an analytical, spatially-varying, point-spread-function. 2017 IEEE International Ultrasonics Symposium (IUS) 1–4, 2017.
Seyedhosseini M, Sajjadi M, Tasdizen T: Image segmentation with cascaded hierarchical models and logistic disjunctive normal networks. Proceedings of the IEEE International Conference on Computer Vision 2168-2175, 2013.
Ronneberger O, Fischer P, Brox T: U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 234–241, 2015.
Milletari F, Navab N, Ahmadi SA: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. International Conference on 3D Vision (3DV) 565–571, 2016.
Badrinarayanan V, Kendall A, Cipolla R: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell 39:2481–2495, 2017.
Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211, 2021.
Article CAS PubMed Google Scholar
Roth HR, Lee CT, Shin HC, Seff A, Kim L, Yao J, Lu L, Summers RM: Anatomy-specific classification of medical images using deep convolutional nets. IEEE International Symposium on Biomedical Imaging (ISBI) 101–104, 2015
Isola P, Zhu JY, Zhou T, Efros AA: Image-to-Image Translation with Conditional Adversarial Networks. Proceedings of the IEEE Conference of Computer Vision and Pattern Recognition 5967–5976, 2017.
Wolterink JM, Leiner T, Viergever MA, Išgum I: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36:2536–2545, 2017.
Li Z, Wang Y, Yu J: Reconstruction of Thin-Slice Medical Images Using Generative Adversarial Network. Machine Learning in Medical Imaging 325–333, 2017.
Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G: Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. IEEE Trans Med Imaging 37:1348–1357, 2018.
Article PubMed PubMed Central Google Scholar
Lyu Y, Jiang W, Lin Y, Voros L, Zhang M, Mueller B, Mychalczak B, Song Y: Motion-Blind Blur Removal for CT Images with Wasserstein Generative Adversarial Networks. International Congress on Image and Signal Processing, Biomedical Engineering and Informatics 1–5, 2018.
Chen Y, Shi F, Christodoulou AG, Xie Y, Zhou Z, Li D: Efficient and Accurate MRI Super-Resolution Using a Generative Adversarial Network and 3D Multi-level Densely Connected Network. Medical Image Computing and Computer Assisted Intervention – MICCAI 91–99, 2018.
Hu Z, Jiang C, Sun F, Zhang Q, Ge Y, Yang Y, Liu X, Zheng H, Liang D: Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks. Med Phys 46:1686–1696, 2019.
Jiang Y, Li J: Generative Adversarial Network for Image Super-Resolution Combining Texture Loss. Appl Sci 10:1729, 2020.
Zhang K, Hu H, Philbrick K, Conte GM, Sobek JD, Rouzrokh P, Erickson BJ: SOUP-GAN: Super-resolution MRI using generative adversarial networks. Tomography 8(2):905-19, 2022.
Article PubMed PubMed Central Google Scholar
Sun L, Chen J, Xu Y, Gong M, Yu K, Batmanghelich K: Hierarchical amortized GAN for 3D high resolution medical image synthesis. IEEE J Biomed Health Inform 26:3966–3975, 2022.
Article PubMed PubMed Central Google Scholar
Xu L, Ren JS, Liu C, Jia J: Deep convolutional neural network for image deconvolution. Adv Neural Inf Process Syst 27, 2014.
Tao X, Gao H, Shen X, Wang J, Jia J: Scale-recurrent network for deep image deblurring. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 8174–8182, 2018.
Lee HY, Kwak JM, Ban B, Na SJ, Lee SR, Lee H-K: GAN-D: Generative adversarial networks for image deconvolution. International Conference on Information and Communication Technology Convergence 132–137, 2017.
Jensen JA: Field: A program for simulating ultrasound systems. Med Biol Eng Comput 34:351–353, 1997.
Jensen JA, Svendsen NB: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 39:262–267, 1992.
Article CAS PubMed Google Scholar
Veit A, Wilber MJ, Belongie S: Residual networks behave like ensembles of relatively shallow networks. Adv Neural Inf Process Syst 29, 2016.
Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B: Attention U-Net: Learning Where to Look for the Pancreas. Available at: http://arxiv.org/abs/1804.03999.
Ishikawa H, Schuman JS: Anterior segment imaging: ultrasound biomicroscopy. Ophthalmol Clin N Am 17:7–20, 2004.
Comments (0)