Privacy-Preserving Large Language Model for Matching Findings and Tracking Interval Changes in Longitudinal Radiology Reports

Hassanpour S, Bay G, Langlotz CP: Characterization of Change and Significance for Clinical Findings in Radiology Reports Through Natural Language Processing. Journal of Digital Imaging 30:314-322, 2017

Article  PubMed  PubMed Central  Google Scholar 

Mahesh M, Ansari AJ, Fred A. Mettler J: Patient Exposure from Radiologic and Nuclear Medicine Procedures in the United States and Worldwide: 2009–2018. Radiology 307:e221263, 2023

Article  PubMed  Google Scholar 

Fawzy NA, et al.: Incidence and factors associated with burnout in radiologists: A systematic review. European Journal of Radiology Open 11, 2023

Alexander R, et al.: Mandating Limits on Workload, Duty, and Speed in Radiology. Radiology 304:274-282, 2022

Article  PubMed  Google Scholar 

Thakore NL, Lan M, Winkel AF, Vieira DL, Kang SK: Best Practices: Burnout Is More Than Binary. American Journal of Roentgenology 223:e2431111, 2024

Article  PubMed  Google Scholar 

Mabotuwana T, et al.: Automated Tracking of Follow-Up Imaging Recommendations. American Journal of Roentgenology 212:1287-1294, 2019

Article  PubMed  Google Scholar 

Kemp J, Short R, Bryant S, Sample L, Befera N: Patient-Friendly Radiology Reporting—Implementation and Outcomes. Journal of the American College of Radiology 19:377-383, 2022

Article  PubMed  Google Scholar 

Sloan CE, Chadalavada SC, Cook TS, Langlotz CP, Schnall MD, Zafar HM: Assessment of Follow-up Completeness and Notification Preferences for Imaging Findings of Possible Cancer: What Happens After Radiologists Submit Their Reports? Academic Radiology 21:1579-1586, 2014

Article  PubMed  PubMed Central  Google Scholar 

Berlin L: Comparing new radiographs with those obtained previously. American Journal of Roentgenology 172:3-6, 1999

Article  CAS  PubMed  Google Scholar 

Studdert DM, et al.: Claims, Errors, and Compensation Payments in Medical Malpractice Litigation. New England Journal of Medicine 354:2024-2033, 2006

Article  CAS  PubMed  Google Scholar 

Kwan JL, Singh H: Assigning responsibility to close the loop on radiology test results4:173–177, 2017

Braileanu M, Crawford K, Key SR, Mullins ME: Assessment of Explicitly Stated Interval Change on Noncontrast Head CT Radiology Reports. American Journal of Neuroradiology 40:1091-1094, 2019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bozkurt S, Alkim E, Banerjee I, Rubin DL: Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm. Journal of Digital Imaging 32:544-553, 2019

Article  PubMed  PubMed Central  Google Scholar 

Jorg T, et al.: Implementation of structured reporting in clinical routine: a review of 7 years of institutional experience. Insights into Imaging 14:61, 2023

Article  PubMed  PubMed Central  Google Scholar 

OpenAI: Introducing ChatGPT. OpenAI Blog, 2022

Doo FX, et al.: Exploring the Clinical Translation of Generative Models Like ChatGPT: Promise and Pitfalls in Radiology, From Patients to Population Health. Journal of the American College of Radiology 20:877-885, 2023

Article  PubMed  Google Scholar 

Schmidt RA, Seah JCY, Cao K, Lim L, Lim W, Yeung J: Generative Large Language Models for Detection of Speech Recognition Errors in Radiology Reports. Radiology: Artificial Intelligence 6:e230205, 2024

Lou R, Lalevic D, Chambers C, Zafar HM, Cook TS: Automated Detection of Radiology Reports that Require Follow-up Imaging Using Natural Language Processing Feature Engineering and Machine Learning Classification. Journal of Digital Imaging 33:131-136, 2020

Article  PubMed  Google Scholar 

Nakamura Y, et al.: Automatic detection of actionable radiology reports using bidirectional encoder representations from transformers. BMC Medical Informatics and Decision Making 21:262, 2021

Article  PubMed  PubMed Central  Google Scholar 

Abbasi N, et al.: Development and External Validation of an Artificial Intelligence Model for Identifying Radiology Reports Containing Recommendations for Additional Imaging. American Journal of Roentgenology 221:377-385, 2023

Article  PubMed  Google Scholar 

Chng SY, Tern PJW, Kan MRX, Cheng LTE: Automated labelling of radiology reports using natural language processing: Comparison of traditional and newer methods. Health Care Science 2:120-128, 2023

Article  PubMed  PubMed Central  Google Scholar 

Bressem KK, et al.: Highly accurate classification of chest radiographic reports using a deep learning natural language model pre-trained on 3.8 million text reports. Bioinformatics 36:5255–5261, 2020

Zhu Q, Mathai TS, Mukherjee P, Peng Y, Summers RM, Lu Z: Utilizing Longitudinal Chest X-Rays and Reports to Pre-fill Radiology Reports: City

Adams LC, et al.: Leveraging GPT-4 for Post Hoc Transformation of Free-text Radiology Reports into Structured Reporting: A Multilingual Feasibility Study. Radiology 307:e230725, 2023

Article  PubMed  Google Scholar 

Elkassem AA, Smith AD: Potential Use Cases for ChatGPT in Radiology Reporting. American Journal of Roentgenology 221:373-376, 2023

Article  PubMed  Google Scholar 

de Vries A: The growing energy footprint of artificial intelligence. Joule 7:2191-2194, 2023

Article  Google Scholar 

Li P, Yang J, Islam MA, Ren S: Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models. arXiv, 2023

Mukherjee P, Hou B, Lanfredi RB, Summers RM: Feasibility of Using the Privacy-preserving Large Language Model Vicuna for Labeling Radiology Reports. Radiology 309:e231147, 2023

Article  PubMed  Google Scholar 

Shieh A, Paolucci I, Albuquerque J, Brock K, Odisio B: Feasibility of extracting critical diagnostic imaging report findings following percutaneous liver ablation with a large language model: SPIE, 2024

Hamamci IE, et al.: A foundation model utilizing chest CT volumes and radiology reports for supervised-level zero-shot detection of abnormalities. ArXiv abs/2403.17834, 2024

Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. Available at https://lmsys.org/blog/2023-03-30-vicuna.

Touvron H, et al.: Llama: Open and efficient foundation language models. arXiv preprint arXiv:230213971, 2023

Rozière B, et al.: Code Llama: Open Foundation Models for Code. ArXiv abs/2308.12950, 2023

Team X-L: Xwin-LM. HuggingFace Library, 2023

Tenyx: TenyxChat: Language Model Alignment using Tenyx Fine-tuning. HuggingFace Library, 2024

Wang G, Cheng S, Zhan X, Li X, Song S, Liu Y: OpenChat: Advancing Open-source Language Models with Mixed-Quality Data. ArXiv abs/2309.11235, 2023

Zheng L, et al.: Judging LLM-as-a-judge with MT-Bench and Chatbot Arena. ArXiv abs/2306.05685, 2023

Liu Y, Iter D, Xu Y, Wang S, Xu R, Zhu C: G-Eval: NLG Evaluation using Gpt-4 with Better Human Alignment: City, December Year

Lehnen NC, et al.: Data Extraction from Free-Text Reports on Mechanical Thrombectomy in Acute Ischemic Stroke Using ChatGPT: A Retrospective Analysis. Radiology 311:e232741, 2024

Article  PubMed  Google Scholar 

McHugh ML: Interrater reliability: the kappa statistic. Biochemia Medica 22:276 - 282, 2012

Article  PubMed  PubMed Central  Google Scholar 

Han NY, et al.: Enhancing Oncological Surveillance Through Large Language Model-Assisted Analysis: A Comparative Study of GPT-4 and Gemini in Evaluating Oncological Issues From Serial Abdominal CT Scan Reports. Academic Radiology, 2024

Nobel JM, Kok EM, Robben SGF: Redefining the structure of structured reporting in radiology. Insights into Imaging 11:10, 2020

Article  PubMed  PubMed Central  Google Scholar 

Goldberg-Stein S, Chernyak V: Adding Value in Radiology Reporting. Journal of the American College of Radiology 16:1292-1298, 2019

Article  PubMed  Google Scholar 

Busch F, et al.: Large language models for structured reporting in radiology: past, present, and future. European Radiology, 2024

Kahn CE, Jr., Heilbrun ME, Applegate KE: From Guidelines to Practice: How Reporting Templates Promote the Use of Radiology Practice Guidelines. Journal of the American College of Radiology 10:268-273, 2013

Article  PubMed  PubMed Central  Google Scholar 

Dalal S, et al.: Determining Follow-Up Imaging Study Using Radiology Reports. Journal of Digital Imaging 33:121-130, 2020

Article  PubMed  Google Scholar 

Dorfner FJ, et al.: Biomedical Large Languages Models Seem not to be Superior to Generalist Models on Unseen Medical Data. arXiv, 2024

Rochman S, Szeskin A, Lederman R, Sosna J, Joskowicz L: Graph-based automatic detection and classification of lesion changes in pairs of CT studies for oncology follow-up. International Journal of Computer Assisted Radiology and Surgery 19:241-251, 2024

Article  PubMed  Google Scholar 

Comments (0)

No login
gif