Dawson TM, Golde TE, Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21(10):1370–1379
Greek R, Menache A (2013) Systematic reviews of animal models: methodology versus epistemology. Int J Med Sci 10(3):206–221
Moreno-Gonzalez I, Soto C (2012) Natural animal models of neurodegenerative protein misfolding diseases. Curr Pharm Des 18(8):1148–1158
Roitbak T (2020) MicroRNAs and regeneration in animal models of CNS disorders. Neurochem Res 45(1):188–203
Bourgognon J-M, Steinert JR (2019) The metabolome identity: basis for discovery of biomarkers in neurodegeneration. Neural Regeneration Res 14(3):387–390
Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. Dis Models Mech 10(5):499–502
Verdier J-M et al (2015) Lessons from the analysis of nonhuman primates for Understanding human aging and neurodegenerative diseases. Front NeuroSci 9:64
Katchur NJ, Notterman DA (2024) Recent insights from non-mammalian models of brain injuries: an emerging literature. Front Neurol 15:1378620
Peterson RT et al (2008) Use of non-mammalian alternative models for neurotoxicological study. Neurotoxicology 29(3):546–555
CAS PubMed Central Google Scholar
Yamamoto S et al (2024) Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans. Nat Rev Genet 25(1):46–60
Mishra R et al (2019) LRSAM1 E3 ubiquitin ligase: molecular Neurobiological perspectives linked with brain diseases. Cell Mol Life Sci 76(11):2093–2110
CAS PubMed Central Google Scholar
Mishra R et al (2020) Ubiquitin ligase LRSAM1 suppresses neurodegenerative diseases linked aberrant proteins induced cell death. Int J Biochem Cell Biol 120:105697
Liu C et al (2013) Pronuclear microinjection and oviduct transfer procedures for Transgenic mouse production. Methods Mol Biol 1027:217–232
Nagano M et al (2001) Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci U S A 98(23):13090–13095
CAS PubMed Central Google Scholar
Shakweer WME et al (2023) A review of Transgenic animal techniques and their applications. J Genet Eng Biotechnol 21(1):55
CAS PubMed Central Google Scholar
Kim H et al (2018) Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res 34(4):147–159
Mayeux R, Stern Y (2012) Epidemiology of alzheimer disease. Cold Spring Harbor Perspect Med 2(8):a006239
Li X-L et al (2014) Behavioral and psychological symptoms in Alzheimer’s disease. BioMed research international, 2014: pp. 927804–927804
Armstrong RA (2009) The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol 47(4):289–299
Mouton PR et al (1998) Cognitive decline strongly correlates with cortical atrophy in Alzheimer’s dementia. Neurobiol Aging 19(5):371–377
Henneman WJP et al (2009) Hippocampal atrophy rates in alzheimer disease: added value over whole brain volume measures. Neurology 72(11):999–1007
CAS PubMed Central Google Scholar
Murphy MP, LeVine H 3 (2010) Alzheimer’s disease and the amyloid-beta peptide. J Alzheimer’s Disease: JAD 19(1):311–323
Brion JP et al Neurofibrillary tangles and Tau phosphorylation. Biochem Soc Symp 2001;(67):81–88
Bekris LM et al (2010) Genetics of alzheimer disease. J Geriatr Psychiatr Neurol 23(4):213–227
Vassar R (2004) Bace 1: the β-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 23:105–113
Price DL et al (1998) Alzheimer’s disease: genetic studies and Transgenic models. Annu Rev Genet 32:461–493
LaFerla FM, Green KN (2012) Animal models of alzheimer disease. Cold Spring Harbor Perspect Med 2(11):a006320
Chen G-F et al (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38(9):1205–1235
CAS PubMed Central Google Scholar
Eriksen JL, Janus CG (2007) Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behav Genet 37(1):79–100
Games D et al (1995) Alzheimer-type neuropathology in Transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373(6514):523–527
Hsiao K et al (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in Transgenic mice. Science 274(5284):99–103
Sturchler-Pierrat C et al (1997) Two amyloid precursor protein Transgenic mouse models with alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94(24):13287–13292
CAS PubMed Central Google Scholar
Mucke L et al (2000) High-level neuronal expression of Abeta 1–42 in wild-type human amyloid protein precursor Transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20(11):4050–4058
CAS PubMed Central Google Scholar
Chishti MA et al (2001) Early-onset amyloid deposition and cognitive deficits in Transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276(24):21562–21570
Lord A et al (2006) The Arctic alzheimer mutation facilitates early intraneuronal Abeta aggregation and senile plaque formation in Transgenic mice. Neurobiol Aging 27(1):67–77
Yamada K et al (2009) Abeta immunotherapy: intracerebral sequestration of Abeta by an anti-Abeta monoclonal antibody 266 with high affinity to soluble Abeta. J Neurosci 29(36):11393–11398
CAS PubMed Central Google Scholar
Richards JG et al (2003) PS2APP Transgenic mice, coexpressing hPS2mut and hAPPswe, show age-related cognitive deficits associated with discrete brain amyloid deposition and inflammation. J Neurosci 23(26):8989–9003
CAS PubMed Central Google Scholar
Jankowsky JL et al (2003) Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum Mol Genet 13(2):159–170
Oakley H et al (2006) Intraneuronal β-Amyloid aggregates, neurodegeneration, and neuron loss in Transgenic mice with five Familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140
CAS PubMed Central Google Scholar
McGowan E, Eriksen J, Hutton M (2006) A decade of modeling Alzheimer’s disease in Transgenic mice. Trends Genet 22(5):281–289
Lewis J et al (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) Tau protein. Nat Genet 25(4):402–405
Yoshiyama Y et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351
SantaCruz K et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476–481
CAS PubMed Central Google Scholar
Oddo S et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421
Saito T et al (2019) Humanization of the entire murine Mapt gene provides a murine model of pathological human Tau propagation. J Biol Chem 294(34):12754–12765
CAS PubMed Central Google Scholar
Clavaguera F et al (2009) Transmission and spreading of tauopathy in Transgenic mouse brain. Nat Cell Biol 11(7):909–913
CAS PubMed Central Google Scholar
Ahmed Z et al (2014) A novel in vivo model of Tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol 127(5):667–683
CAS PubMed Central Google Scholar
Shi Y et al (2021) Structure-based classification of tauopathies. Nature 598(7880):359–363
CAS PubMed Central Google Scholar
Iqbal K et al (2010) Tau in alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664
CAS PubMed Central Google Scholar
Wenger K et al (2023) Common mouse models of tauopathy reflect early but not late human disease. Mol Neurodegener 18(1):10
CAS PubMed Central Google Scholar
Spillantini MG et al (1997) Alpha-synuclein in lewy bodies. Nature 388(6645):839–840
Comments (0)